Skip to main content

Advertisement

Log in

The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene

  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Humanity has entered a new phase of sustainability challenges, the Anthropocene, in which human development has reached a scale where it affects vital planetary processes. Under the pressure from a quadruple squeeze—from population and development pressures, the anthropogenic climate crisis, the anthropogenic ecosystem crisis, and the risk of deleterious tipping points in the Earth system—the degrees of freedom for sustainable human exploitation of planet Earth are severely restrained. It is in this reality that a new green revolution in world food production needs to occur, to attain food security and human development over the coming decades. Global freshwater resources are, and will increasingly be, a fundamental limiting factor in feeding the world. Current water vulnerabilities in the regions in most need of large agricultural productivity improvements are projected to increase under the pressure from global environmental change. The sustainability challenge for world agriculture has to be set within the new global sustainability context. We present new proposed sustainability criteria for world agriculture, where world food production systems are transformed in order to allow humanity to stay within the safe operating space of planetary boundaries. In order to secure global resilience and thereby raise the chances of planet Earth to remain in the current desired state, conducive for human development on the long-term, these planetary boundaries need to be respected. This calls for a triply green revolution, which not only more than doubles food production in many regions of the world, but which also is environmentally sustainable, and invests in the untapped opportunities to use green water in rainfed agriculture as a key source of future productivity enhancement. To achieve such a global transformation of agriculture, there is a need for more innovative options for water interventions at the landscape scale, accounting for both green and blue water, as well as a new focus on cross-scale interactions, feed-backs and risks for unwanted regime shifts in the agro-ecological landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barron, J., and G. Okwach. 2005. Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya. Agricultural Water Management 74(1): 1–21.

    Article  Google Scholar 

  • Barron, J., J. Rockström, F. Gichuki, and N. Hatibu. 2003. Dry spell analysis and maize yields for two semi-arid locations in East Africa. Agricultural and Forest Meteorology 117(1–2): 23–37.

    Article  Google Scholar 

  • Battisti, D.S., and R.L. Naylor. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323: 240–244.

    Article  CAS  Google Scholar 

  • Calder, I.R. 1999. The blue revolution: land use and integrated water resources management. London: Earthscan.

    Google Scholar 

  • Canadell, J.G., D. Le Quéré, M.R. Raupach, C.R. Field, E. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104: 18866–18870.

    Article  CAS  Google Scholar 

  • Carpenter, S.R., H.A. Mooney, J. Agard, et al. 2009. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America 106(5): 1305–1312.

    Article  CAS  Google Scholar 

  • Challinor, A.J., and T.R. Wheeler. 2008. Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agriculture and Forest Meteorology 148: 1062–1077.

    Article  Google Scholar 

  • Chapin, F.S. III, Kofinas, G.P., and Folke, C., 2010. Principles of ecosystem stewardship. Resilience-based natural resources management in a changing world, 401 pp. New York: Springer.

  • Constanza, R., L. Graumlich, W. Steffen, et al. 2007. Sustainability or collapse: what can we learn from integrating the history of humans and the rest of nature? Ambio 36: 522–527.

    Article  Google Scholar 

  • Conway, G. 1997. The doubly green revolution. Food for all in the twenty-first century. New York: Penguin Books.

    Google Scholar 

  • Cooper, P.J.M., J. Dimes, K.P.C. Rao, B. Shapiro, B. Shiferaw, and S. Twomlow. 2008. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: an essential first step in adapting to future climate change? Agriculture Ecosystems and Environment 126: 24–35.

    Article  Google Scholar 

  • Derpsch, R. 1998. Historical review of no-tillage cultivation of crops. In Conservation Tillage for Sustainable Agriculture. Proceedings from an International Workshop, Harare, 22–27 June. Part II (Annexes), J. Benites, E. Chuma, R. Fowler, J. Kienzle, K. Molapong, J. Manu, I. Nyagumbo, K. Steiner, and R. van Veenhuizen, eds. Eschborn, Germany: Deutsche Gesellschaft fur Technische Zusammenarbeit.

  • Eisenman, I., and J.S. Wettlaufer. 2009. Nonlinear threshold behavior during the loss of Arctic sea ice. Proceedings of the National Academy of Sciences of the United States of Americ 106(1): 28–32.

    Article  CAS  Google Scholar 

  • Emberson, L.D., P. Büker, M.R. Ashmore, G. Mills, L.S. Jackson, M. Agrawal, M.D. Atikuzzaman, S. Cinderby, M. Engardt, C. Jamir, K. Kobayashi, N.T.K. Oanh, Q.F. Quadir, and A. Wahid. 2009. A comparison of North American and Asian exposure response data for ozone effects on crop yields. Atmospheric Environment 43: 1945–1953.

    Article  CAS  Google Scholar 

  • Enfors, E.I., and L.J. Gordon. 2008. Dealing with drought: the challenge of using water system technologies to break dryland poverty traps. Global Environmental Change 18(4): 607–616.

    Article  Google Scholar 

  • Falkenmark, M. 1986. Fresh water—time for a modified approach. Ambio 15(4): 192–200.

    Google Scholar 

  • Falkenmark, M., and J. Rockström. 2004. Balancing water for humans and nature. The new approach in ecohydrology, pp 247. London: Earthscan.

  • Falkenmark, M., J. Rockström, and L. Karlberg. 2009. Present and future water requirements for feeding humanity. Food Security 1: 59–69.

    Article  Google Scholar 

  • Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C. Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C. Monfreda, J.A. Patz, I.C. Prentice, N. Ramankutty, and P.K. Snyder. 2005. Global consequences of land use. Science 309: 570–574.

    Article  CAS  Google Scholar 

  • Folke, C., and J. Rockström. 2009. Turbulent times. Global Environmental Change 19: 1–3 (editorial).

  • Fox, P., and J. Rockström. 2000. Water harvesting for supplemental irrigation of cereal crops to overcome intra-seasonal dry-spells in the Sahel. Physics and Chemistry of the Earth, Part B Hydrology 25(3): 289–296.

    Article  Google Scholar 

  • Fox, P., and J. Rockström. 2003. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel. Agricultural Water Management 61(1): 29–50.

    Article  Google Scholar 

  • Gordon, L.J., G.D. Peterson, and E.M. Bennett. 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology & Evolution 23(4): 211–219.

    Article  Google Scholar 

  • Hansen, J., M. Sato, P. Kharecha, D. Beerling, R. Berner, V. Masson-Delmotte, M. Pagani, M. Raymo, D.L. Royer, and J.C. Zachos. 2008. Target atmospheric CO2: where should humanity aim? Open Atmospheric Science Journal 2: 217–231. doi:10.2174/1874282300802010217.

    Article  CAS  Google Scholar 

  • IAASTD. 2009. Agriculture at the crossroads. Global summary for decision makers. International assessment of agricultural knowledge, science and technology, p 38. Washington: Island Press.

  • International Energy Agency. 2008. World energy outlook, p 555 Paris: OECD.

  • Irz, X., and T. Roe. 2000. Can the world feed itself? Some insights from growth theory. Agrecon 39(3): 513–528.

    Google Scholar 

  • Karlberg, L., J. Rockström, and M. Falkenmark. 2009. Water resource implications of upgrading rainfed agriculture—focus on green and blue water trade-offs. In Rainfed agriculture—unlocking the potential. comprehensive assessment of water management in agriculture, series vol. 7, ed. S. Wani, J. Rockström, and T. Oweis. Wallingford, UK: CABI Publication.

    Google Scholar 

  • King, J., C. Brown, and H. Sabet. 2003. A scenario-based approach to environmental flow assessments for rivers. River Research and Applications 19: 619–639.

    Article  Google Scholar 

  • Landers, J.N., H. Mattana Saturnio, P.L. de Freitas, and R. Trecenti. 2001. Experiences with farmer clubs in dissemination of zero tillage in tropical Brazil. In Conservation agriculture, a worldwide challenge, L. García-Torres, J. Benites, and A. Martínez-Vilela, eds., Rome: Food and Agriculture Organization.

  • Lenton, T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, S. Rahmstorf, and H.J. Schellnhuber. 2008. Tipping elements in Earth’s climate system. Proceedings of the National Academy of Sciences of the United States of Americ 105: 1786–1793.

    Article  CAS  Google Scholar 

  • Li, K.Y., M.T. Coe, N. Ramankutty, and R. De Jong. 2007. Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology 337: 258–268.

    Article  Google Scholar 

  • Long, S.P., E.A. Ainsworth, A.D.B. Leakey, J. Nosberger, and D.R. Ort. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312: 1918–1921.

    Article  CAS  Google Scholar 

  • Lovelock, J. 2006. The revenge of GAIA, pp 178. London: Penguin Books.

  • MEA, 2005. Millennium ecosystem assessment, 2005. Ecosystems and human well-being: synthesis. Washington: Island Press.

  • Oweis, T. 1997. Supplemental irrigation: a highly efficient water-use practice. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas.

    Google Scholar 

  • Ramankutty, N., A.T. Evan, C. Monfreda, and J.A. Foley. 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year2000. Global Biogeochemical Cycles 22: GB1003. doi:10.1029/2007GB002952.

    Article  Google Scholar 

  • Reid, W., Bréchignac, C., Tseh Lee, Yuan. 2009. Earth system research priorities. Science 325(5938): 245.

    Google Scholar 

  • Richardson, K., Steffen, W., Schellnhuber, J., et al. 2009. Climate changeglobal risks, challenges and decisions, p 39. Synthesis report. Denmark: International Alliance of Research Universities, University of Copenhagen.

  • Rockström, J. 2003. Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture. Royal Society Transactions B Biological Sciences 358(1440): 1997–2009.

    Article  Google Scholar 

  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J.A. Foley. 2009c. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society 14(2): 32.

  • Rockström, J., and Karlberg, L. 2009. Zooming in on the global hotspots of rainfed agriculture in water-constrained environments. In Rainfed agriculture: unlocking the potential, pp 36–43. Comprehensive assessment of water management in agriculture series, eds. Wani, S.P., J. Rockström, and T. Oweis. Wallingford: CABI.

  • Rockström, J., M. Falkenmark, L. Karlberg, H. Hoff, S. Rost, and D. Gerten. 2009a. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resources Research 45: W00A12. doi:10.1029/2007WR006767.

    Article  Google Scholar 

  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J.A. Foley. 2009b. A safe operating space for humanity. Nature 461: 472–475. doi:10.1038/461472a.

    Article  Google Scholar 

  • Rockström, J., P. Kaumbutho, J. Mwalley, A.W. Nzabi, M. Temesgen, L. Mawenya, J. Barron, J. Mutua, and S. Damgaard-Larsen. 2009d. Conservation farming strategies in East and Southern Africa: yields and rain water productivity from on-farm action research. Soil and Tillage Research 103(1): 23–32.

    Article  Google Scholar 

  • Rockström, J., K. Vohland, W. Lucht, H. Lotze-Campen, E.U. von Weizsäcker, and T. Banuri. 2010a. Making progress within and beyond borders. In Global sustainability: a nobel cause, ed. H.J. Schellnhuber, M. Molina, N. Stern, V. Huber, and S. Kadner, 33–48. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rockström, J., L. Karlberg, S.P. Wani, J. Barron, N. Hatibu, T. Oweis, A. Bruggeman, J. Farahani, and Z. Qiang. 2010b. Managing water in rainfed agriculture—the need for a paradigm shift. Agricultural Water Management 97(4): 543–550.

    Article  Google Scholar 

  • Rost, S., D. Gerten, H. Hoff, W. Lucht, M. Falkenmark, and J. Rockström. 2009. Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters 4. doi:10.1088/1748-9326/4/4/044002.

  • Savenije, H.H.G. 1996. The runoff coefficient as key to moisture recycling. Journal of Hydrology 176: 219–225.

    Article  Google Scholar 

  • Scanlon, B.R., I. Jolly, M. Sophocleous, and L. Zhang. 2007. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resources Research 43. doi:10.1029/2006WR005486.

  • Scheffer, M., S.R. Carpenter, J.A. Foley, C. Folke, and B.H. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  CAS  Google Scholar 

  • Schellnhuber, H.C. 2009. Tipping elements in the earth system. Proceedings of the National Academy of Sciences of the United States of Americ 106(49): 20561–20563.

    Article  CAS  Google Scholar 

  • SEI (Stockholm Environment Institute). 2005. Sustainable pathways to attain the millennium development goalsassessing the role of water, energy and sanitation. Document prepared for the UN World Summit, 14 September, New York, Stockholm.

  • Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and Ö. Gustafsson. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science 5: 1246–1250.

    Article  Google Scholar 

  • Siegert, K. 1994. Introduction to water harvesting: Some basic principles for planning, design and monitoring. In Water harvesting for improved agricultural production. Proceedings of the FAO expert consultation, 21–25 November 1993, Cairo. Water report 3. Rome: Food and Agriculture Organization.

  • Steffen, W., A. Sanderson, J. Jäger, P.D. Tyson, B. Moore III, P.A. Matson, K. Richardson, F. Oldfield, H.-J. Schellnhuber, B.L. Turner II, and R.J. Wassn. 2004. Global change and the earth system: a planet under pressure. Heidelberg: Springer Verlag.

  • Steffen, W., P.J. Crutzen, and J.R. McNeill. 2007. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36: 614–621.

    Article  CAS  Google Scholar 

  • Sullivan, C.A. and C. Huntingford. 2009. Water resources, climate change and human vulnerability. 18th World IMACS/MODSIM Congress, Cairns, Australia 13–17 July 2009.

  • Tubiello, F.N., and F. Ewert. 2002. Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. European Journal of Agronomy 18: 57–74.

    Article  Google Scholar 

  • UN DESA. 2009. World population prospects—the 2008 prospects highlights, p s107. Population Division, United Nations Department of Economic and Social Affairs. Working Paper No. ESA/P/WP.210.

  • Walker, B.H., N. Abel, J.M. Anderies, and P. Ryan. 2009. Resilience, adaptability and transformability in the Goulburn-Broken catchment, Australia. Ecology and Society 14(1): 12.

    Google Scholar 

  • Wani, S.P., P.K. Joshi, K.V. Raju, T.K. Sreedevi, J.M. Wilson, A. Shah, P.G. Diwakar, K. Palanisami, S. Marimuthu, A.K. Jha, Y.S. Ramakrishna, S.S.S. Meenakshi, and M. D’Souza. 2008. Community watershed as a growth engine for development of dryland areas. A comprehensive assessment of watershed programs in India. Global theme on agroecosystems, 156 pp. Report No 47. Patancheru 502324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Ministry of Agriculture and Ministry of Rural Development.

  • WBGU. 2009. Solving the climate dilemma: the budget approach, p 51 Special report of the German Advisory Council on global change. Berlin: Germany.

  • World Bank. 2000. Spurring agricultural and rural development. In can africa claim the 21st century? Washington: World Bank.

  • World Bank. 2005. Agricultural growth for the poor: an agenda for development. Washington: World Bank.

  • World Bank. 2008. World development report: agriculture for development. Washington: World Bank.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Rockström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rockström, J., Karlberg, L. The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. AMBIO 39, 257–265 (2010). https://doi.org/10.1007/s13280-010-0033-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-010-0033-4

Keywords

Navigation