Skip to main content
Log in

Using complex networks to identify patterns in specialty mathematical language: a new approach

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

The special words and combinations of two words (so-called collocations) that are specific references within a specialty language collectively constitute the terminology of that specialty language and characterize that language. In this paper, we analyze the specialty mathematical language produced by the scientific community of complex networks from the perspective of the theory and tools of complex networks to extract new properties and characteristics of this language. For this purpose, a linguistic corpus of 86 extended abstracts of papers (all of them based on the theory and applications of complex networks) has been used. To analyze the collocations that are part of the language terminology, a multilayer network and the line graph structure have been considered. The obtained results of our computational study show that the structure of collocations in this mathematical specialty language text corpus referred to complex networks is much more sensitive to variations in the intensity of their appearance in specialized texts than the structure of the words isolated from the specialty text itself, pointing to an intrinsic feature in the linguistic structure of this type of texts. This model can be a very useful tool for translators who work with specialized texts in the area of knowledge corresponding to the corpus studied, a particularly difficult task if the translator is not a specialist in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aigner M (1967) On the line graph of a directed graph. Mathematische Zeitschrift 102(1):56–61

    MathSciNet  MATH  Google Scholar 

  2. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74:47–97

    MathSciNet  MATH  Google Scholar 

  3. Aleja D, Criado R, García del Amo A, Pérez A, Romance M (2019) Non-backtracking PageRank: from the classic model to Hashimoto matrices. Chaos Solitons Fract 126:283–2918

    MathSciNet  MATH  Google Scholar 

  4. Bagga J (2004) Old and new generalizations of line graphs. IJMMS 29:1509–1521

    MathSciNet  MATH  Google Scholar 

  5. Bar-Yam Y (1997) Dynamics of Complex Systems. Addison-Wesley, Boston

    MATH  Google Scholar 

  6. Bickerton D (2009) Adam’s tongue: how humans made language. How Language Made Humans, Hill and Wang

    Google Scholar 

  7. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424:75–308

    MathSciNet  MATH  Google Scholar 

  8. Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122

    MathSciNet  Google Scholar 

  9. Boldi P, Santini M, Vigna S (2009) PageRank: functional dependencies. ACM Trans Inf Syst 27(4):19–23

    Google Scholar 

  10. Borge-Holthoefer J, Arenas A (2010) Semantic networks: structure and dynamics. Entropy 12:1264–1302

    MATH  Google Scholar 

  11. Bowker L, Pearson J (2002) Working with specialized language: a practical guide to using corpora. Routledge, Abingdon

    Google Scholar 

  12. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Comput Netw 30:107

    Google Scholar 

  13. Brin S, Page L, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Technical Report, Standford InfoLab

    Google Scholar 

  14. Byrne JA (2014) Framework for the Identification and Strategic Development of Translation Specialisms. Meta 59(1):125

    Google Scholar 

  15. Cabré MT (2010) Terminology and translation. Handb Transl Stud 1:356–365

    Google Scholar 

  16. Cárdenas JP, Losada JC, Moreira A, Torre IG, Benito RM (2011) Topological complexity in natural and formal languages. Int J Complex Syst Sci 1(2):221–225

    Google Scholar 

  17. Cárdenas JP, Olivares G, Alfaro R (2014) Clasificación automática de textos usando redes de palabras. Revista signos: estudios de lingűística 86:346–364

    Google Scholar 

  18. Chapela V, Criado R, Moral S, Romance M (2015) Intentional risk management through complex networks analysis. Springer, Heidelberg

    MATH  Google Scholar 

  19. Cong J, Liu H (2014) Approaching human language with complex networks. Phys Life Rev 11(4):1

    Google Scholar 

  20. Criado R, Flores J, González-Vasco MI, Pello J (2007) Choosing a leader on a complex network. JCAM 204(1):10–17

    MathSciNet  MATH  Google Scholar 

  21. Criado R, Flores J, García del Amo A, Romance M (2011) Analytical relationships between metric and centrality measures of a network and its dual. JCAM 235(7):1775–1780

    MathSciNet  MATH  Google Scholar 

  22. Criado R, Flores J, García del Amo A, Romance M (2012) Structural properties of the line-graphs associated to directed networks. Networks Heterogen Med 7(3):373–384

    MathSciNet  MATH  Google Scholar 

  23. Criado R, Flores J, García del Amo A, Gómez-Gardeñes J, Romance M (2012) A mathematical model for networks with structures in the mesoscale. Int J Comput Math 89(3):291–309

    MathSciNet  MATH  Google Scholar 

  24. Criado R, Romance M, Sánchez A (2012) A post-processing method for interest points location in images by using weighted line graphs complex networks. Int J Bif Chaos 22(7):1250163

    Google Scholar 

  25. Criado R, Flores J, García A, Romance M (2014) Centralities of a network and its line graph: an analytical comparison by means of their irregularity. Int J Comput Math 91(2):304–314

    MathSciNet  MATH  Google Scholar 

  26. Criado R, Flores J, García del Amo A, Romance M, Barrena E, Mesa JA (2016) Line graphs for a multiplex network. Chaos 26(6):065309

    MathSciNet  MATH  Google Scholar 

  27. Criado R, Moral S, Pérez A, Romance M (2018) On the edges’s PageRank and linegraphs. Chaos 28(7):075503

    MathSciNet  MATH  Google Scholar 

  28. Crucitti P, Latora V, Porta S (2006) Centrality in networks of urban streets. Chaos 16:015113

    MATH  Google Scholar 

  29. Da Fontoura Costa L, Oliveira ON, Travieso G, Rodrigues FA, Villas Boas PR, Antiqueira L, Viana MP, Correa Rocha LE (2011) Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv Phys 60(3):329–412

    Google Scholar 

  30. De Domenico M, Solé-Ribalta A, Cozzo E, Kivela M, Moreno Y, Porter MA, Gómez S, Arenas A (2013) Mathematical formulation of multi-layer networks. Phys Rev X 3:041022

    Google Scholar 

  31. Dogorovtsev SN, Mendes JFF (2001) Language as an evolving word web. Proc R Soc Lond B 268:2603–2606

    Google Scholar 

  32. Estrada E (2010) Netw Sci. Springer, New York

    Google Scholar 

  33. Ferrer i Cancho R, Solé RV, (2001) The Small World of Human Language. Proc R Soc Lond B 286:2261–2266

    Google Scholar 

  34. Ferrer i Cancho R, Riordan O, Bollobás B (2005) The consequences of Zipf’s law for syntax and symbolic reference. Proc Biol Sci/R Soc 272(1562):561–565

    Google Scholar 

  35. Firth JR (1951) Modes of meaning, essays and studies of the english association, N.S. 4, 118–149

  36. Firth JR (1951) General linguistics and descriptive grammar. Trans Philol Soc 1:69–87

    Google Scholar 

  37. Firth JR (1957) A synopsis of linguistic theory 1930–1955, studies in linguistic analysis. Spec Vol Philol Soc 1:1–32

    Google Scholar 

  38. García E, Pedroche F, Romance M (2013) On the localization of the personalized pagerank of complex networks. Linear Algebra Appl 439:640–652

    MathSciNet  MATH  Google Scholar 

  39. Halliday MAK (1966) Lexis as a linguistic level. J Linguist 2(1):57–67

    Google Scholar 

  40. Halliday MAK, Matthiessen CMIM (2004) Introduction to Functional Grammar, 3rd edn. Routledge, London

    Google Scholar 

  41. Hemminger RL, Beineke LW (1978) Line graphs and line digraphs. In: Lowell WB, Wilson RJ (eds) Selected topics in graph theory. Academic Press, New York

    Google Scholar 

  42. Hua MB, Jianga RR, Wang R, Wu QS (2009) Urban traffic simulated from the dual representation: flow, crisis and congestion. Phys Lett A 373:2007–2011

    MATH  Google Scholar 

  43. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1–2):81–89

    MATH  Google Scholar 

  44. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

    Google Scholar 

  45. Liu H, Hu F (2008) What role does syntax play in a language network? EPL (Europhys Lett) 83:18002

    Google Scholar 

  46. Liu H, Cong J (2014) Empirical characterization of modern Chinese as a multi-level system from the complex network approach. J Chin Linguist 42:1–38

    Google Scholar 

  47. Liu H, Xu C, Liang J (2017) Dependency distance: a new perspective on syntactic patterns in natural languages. Phys Life Rev 21:171–193

    Google Scholar 

  48. Martincic S, Margan D, Mestrovic A (2016) Multilayer network of language: a unified framework for structural analysis of linguistic subsystems. Phys Rev E 74:026102

    Google Scholar 

  49. Masucci A, Rodgers G (2006) Network properties of written human language. Physica A 457:117–128

    Google Scholar 

  50. Mehler A, Lűcking A, Banisch S, Blanchard P, Frank-Job B (eds) (2016) Towards a theoretical framework for analyzing complex linguistics networks. Springer, Berlin

    MATH  Google Scholar 

  51. Moral S, Chapela V, Criado R, Pérez A, Romance M (2015) Efficient algorithms for estimating loss of information in a complex network: applications to intentional risk analysis. Netw Heterogen Med 10(1):195–208

    MathSciNet  MATH  Google Scholar 

  52. Navigli R (2009) Word sense disambiguation: a survey. ACM Comput Surv 41(2):1–69

    Google Scholar 

  53. Newman M (2010) Networks: an introduction. Oxford University Press, Oxford

    MATH  Google Scholar 

  54. Pastor MLC (2007) La variación del lenguaje de especialidad en artículos científicos. Pragmalingűística 15–16:71–83

    Google Scholar 

  55. Pedroche F, Romance M, Criado R (2016) A biplex approach to PageRank centrality: from classic to multiplex networks. Chaos 26(6):065301

    MathSciNet  MATH  Google Scholar 

  56. Pinker S (1994) The language instinct. HarperCollins, New York

    Google Scholar 

  57. Sager JC (1990) A practical course in terminology processing. John Benjamins Publishing Company, Amsterdam

    Google Scholar 

  58. Sinclair J (1991) Corpus, concordance, collocation. Describing english language. Oxford University Press, Oxford

    Google Scholar 

  59. Solé RV (2005) Syntax for free? Nature 434:289

    Google Scholar 

  60. Solé RV, Corominas-Murtra B, Valverde S, Steels L (2010) Language networks: their function, and evolution. Complexity 15(6):20–26

    Google Scholar 

  61. Varó E, A (2000) El inglés profesional y académico, Alianza

  62. Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  63. Whitney SH (1932) Congruent graphs and the connectivity of graphs. Am J Math 54(1):150–168

    MathSciNet  MATH  Google Scholar 

  64. Zipf GL (1965) Human behavior and the principle of least effort. Hafner

Download references

Acknowledgements

This work has been partially supported by projects PGC2018-101625-B-I00 (Spanish Ministry, AEI/FEDER, UE) and M1993 (URJC Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Criado-Alonso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by projects PGC2018-101625-B-I00 (Spanish Ministry, AEI/FEDER, UE) and M1993 (URJC Grant).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Criado-Alonso, A., Battaner-Moro, E., Aleja, D. et al. Using complex networks to identify patterns in specialty mathematical language: a new approach. Soc. Netw. Anal. Min. 10, 69 (2020). https://doi.org/10.1007/s13278-020-00684-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-020-00684-1

Keywords

Navigation