Skip to main content

Advertisement

Log in

Targeted deactivation of cancer-associated fibroblasts by β-catenin ablation suppresses melanoma growth

  • Original Article
  • Published:
Tumor Biology

Abstract

Cancer-associated fibroblasts (CAFs) are the crucial components of the dynamic tumor microenvironment, which not only supports the growth and metastasis of melanoma but also contributes to drug resistance in melanoma treatment. We recently discovered that loss of β-catenin signaling deactivated stromal fibroblasts and reduced the production of paracrine factors and extracellular matrix proteins. Based on this finding, we aimed to determine whether melanoma growth could be suppressed by targeted deactivation of CAFs via β-catenin ablation using a combination of in vitro and in vivo approaches. Using an in vitro three-dimensional (3D) tumor co-culture model, we showed that β-catenin-deficient fibroblasts lost the ability to respond to melanoma cell stimulation and to support the growth of B16F10 melanoma cells. To determine the in vivo effects of CAF deactivation on melanoma growth, we designed a novel genetic approach to ablate β-catenin expression in melanoma-associated fibroblasts only after melanoma tumor was formed. As expected, our observation showed that development of B16F10 melanoma was significantly delayed when β-catenin expression was ablated in CAFs. We determined that inhibition of tumor growth was due to decreased melanoma cell proliferation and increased cell death. Further analysis revealed that CAF deactivation caused the downregulation of the MAPK/ERK signaling cascade and S and G2/M phase cell cycle arrest in B16F10 melanoma cells. Overall, our data emphasize the significance of targeting CAFs as a potential novel therapeutic approach to improve melanoma treatment by creating a tumor-suppressive microenvironment through tumor-stroma interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bertolotto C. Melanoma: from melanocyte to genetic alterations and clinical options. Scientifica. 2013;2013:635203. doi:10.1155/2013/635203.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  3. Schadendorf D, Hauschild A. Melanoma in 2013: melanoma—the run of success continues. Nat Rev Clin Oncol. 2014;11(2):75–6. doi:10.1038/nrclinonc.2013.246.

    Article  CAS  PubMed  Google Scholar 

  4. Livingstone E, Zimmer L, Vaubel J, Schadendorf D. BRAF, MEK and KIT inhibitors for melanoma: adverse events and their management. Chin Clin Oncol. 2014;3(3):29–47.

    PubMed  Google Scholar 

  5. Lindsay JN, Barras M. Facing the challenges of new melanoma-targeted therapies: treatment of severe fevers associated with dabrafenib/trametinib combination therapy. J Oncol Pharm Pract : Off Publ Int Soc Oncol Pharm Pract. 2015;21(4):293–5. doi:10.1177/1078155214527859.

    Article  CAS  Google Scholar 

  6. Slominski AT, Carlson JA. Melanoma resistance: a bright future for academicians and a challenge for patient advocates. Mayo Clin Proc. 2014;89(4):429–33. doi:10.1016/j.mayocp.2014.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155–228. doi:10.1152/physrev.00044.2003.

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi:10.1016/S0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  10. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. doi:10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peng Q, Zhao L, Hou Y, Sun Y, Wang L, Luo H, et al. Biological characteristics and genetic heterogeneity between carcinoma-associated fibroblasts and their paired normal fibroblasts in human breast cancer. PLoS One. 2013;8(4):e60321. doi:10.1371/journal.pone.0060321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1(4):482–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316(17):2713–22. doi:10.1016/j.yexcr.2010.04.032.

    Article  PubMed  Google Scholar 

  14. Cornil I, Theodorescu D, Man S, Herlyn M, Jambrosic J, Kerbel RS. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc Natl Acad Sci U S A. 1991;88(14):6028–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou L, Yang K, Andl T, Wickett RR, Zhang Y. Perspective of targeting cancer-associated fibroblasts in melanoma. J Cancer. 2015;6(8):717–26. doi:10.7150/jca.10865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaggioli C, Sahai E. Melanoma invasion—current knowledge and future directions. Pigment Cell Res / Sponsored Eur Soc Pigment Cell Res Int Pigment Cell Soc. 2007;20(3):161–72. doi:10.1111/j.1600-0749.2007.00378.x.

    Article  CAS  Google Scholar 

  17. Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M. Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene. 2003;22(20):3162–71. doi:10.1038/sj.onc.1206455.

    Article  CAS  PubMed  Google Scholar 

  18. Flach EH, Rebecca VW, Herlyn M, Smalley KS, Anderson AR. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol Pharm. 2011;8(6):2039–49. doi:10.1021/mp200421k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santos AM, Jung J, Aziz N, Kissil JL, Pure E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest. 2009;119(12):3613–25. doi:10.1172/JCI38988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shao H, Cai L, Grichnik JM, Livingstone AS, Velazquez OC, Liu ZJ. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1. Oncogene. 2011;30(42):4316–26. doi:10.1038/onc.2011.142.

    Article  CAS  PubMed  Google Scholar 

  21. Guan JC, J. Tumor microenvironment: the promising target for tumor therapy. Cancer Cell Microenviron. 2014(1):17–9. doi:10.14800/ccm.81.

  22. Zhou L, Yang K, Randall Wickett R, Zhang Y. Dermal fibroblasts induce cell cycle arrest and block epithelial-mesenchymal transition to inhibit the early stage melanoma development. Cancer Med. 2016;5(7):1566–79. doi:10.1002/cam4.707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng B, Zhang Z, Black CM, de Crombrugghe B, Denton CP. Ligand-dependent genetic recombination in fibroblasts : a potentially powerful technique for investigating gene function in fibrosis. Am J Pathol. 2002;160(5):1609–17. doi:10.1016/S0002-9440(10)61108-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, et al. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell. 2009;17(1):49–61. doi:10.1016/j.devcel.2009.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whittaker P, Kloner RA, Boughner DR, Pickering JG. Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol. 1994;89(5):397–410.

    Article  CAS  PubMed  Google Scholar 

  26. Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian-cells using a ligand-dependent chimeric Cre recombinase. P Natl Acad Sci USA. 1995;92(15):6991–5. doi:10.1073/pnas.92.15.6991.

    Article  CAS  Google Scholar 

  27. Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP, et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development. 2001;128(8):1253–64.

    CAS  PubMed  Google Scholar 

  28. Nyga A, Cheema U, Loizidou M. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal. 2011;5(3):239–48. doi:10.1007/s12079-011-0132-4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dufau I, Frongia C, Sicard F, Dedieu L, Cordelier P, Ausseil F, et al. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer. 2012;12:15. doi:10.1186/1471-2407-12-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laurent J, Frongia C, Cazales M, Mondesert O, Ducommun B, Lobjois V. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 2013;13:73. doi:10.1186/1471-2407-13-73.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pietras K, Pahler J, Bergers G, Hanahan D. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 2008;5(1):e19. doi:10.1371/journal.pmed.0050019.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Choi SY, Sung R, Lee SJ, Lee TG, Kim N, Yoon SM, et al. Podoplanin, alpha-smooth muscle actin or S100 A4 expressing cancer-associated fibroblasts are associated with different prognosis in colorectal cancers. J Korean Med Sci. 2013;28(9):1293–301. doi:10.3346/jkms.2013.28.9.1293.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Collins CA, Kretzschmar K, Watt FM. Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin. Development. 2011;138(23):5189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504(7479):277–81. doi:10.1038/nature12783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharon Y, Alon L, Glanz S, Servais C, Erez N. Isolation of normal and cancer-associated fibroblasts from fresh tissues by Fluorescence Activated Cell Sorting (FACS). J Vis Exp : JoVE. 2013;71:e4425. doi:10.3791/4425.

    Google Scholar 

  36. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp : JoVE. 2011;50:2597. doi:10.3791/2597.

    Google Scholar 

  37. Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci. 2008;121(Pt 23):3853–7. doi:10.1242/jcs.039131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7. doi:10.1038/sj.onc.1209615.

    Article  CAS  PubMed  Google Scholar 

  39. Hocker TL, Singh MK, Tsao H. Melanoma genetics and therapeutic approaches in the 21st century: moving from the benchside to the bedside. J Invest Dermatol. 2008;128(11):2575–95. doi:10.1038/jid.2008.226.

    Article  CAS  PubMed  Google Scholar 

  40. Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(10):1191–6. doi:10.1200/JCO.2014.56.6018.

    Article  CAS  Google Scholar 

  41. Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett. 2015;361(2):155–63. doi:10.1016/j.canlet.2015.02.018.

    Article  PubMed  Google Scholar 

  42. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5(15):1597–601. doi:10.4161/cc.5.15.3112.

    Article  CAS  PubMed  Google Scholar 

  43. Gonda TA, Varro A, Wang TC, Tycko B. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol. 2010;21(1):2–10. doi:10.1016/j.semcdb.2009.10.001.

    Article  CAS  PubMed  Google Scholar 

  44. Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 2006;116(7):1955–62. doi:10.1172/JCI26532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 2006;11(8):922–32. doi:10.1177/1087057106292763.

    Article  CAS  PubMed  Google Scholar 

  46. Kaufmann WK, Nevis KR, Qu P, Ibrahim JG, Zhou T, Zhou Y, et al. Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. J Invest Dermatol. 2008;128(1):175–87. doi:10.1038/sj.jid.5700935.

    Article  CAS  PubMed  Google Scholar 

  47. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Benoit de Crombrugghe for the Col1α2-CreER mice.

Funding

This work was supported by the Elsa U. Pardee Foundation, University of Cincinnati-MRA Young Investigator Award (grant number 300586), the Cincinnati Cancer Center—Mentor-Mentee Award, the Skin Cancer Foundation—The Dr. Marcia Robbins-Wilf Research Grant Award, and the Harry J. LIoyd Trust Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhang Zhang.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yang, K., Wickett, R.R. et al. Targeted deactivation of cancer-associated fibroblasts by β-catenin ablation suppresses melanoma growth. Tumor Biol. 37, 14235–14248 (2016). https://doi.org/10.1007/s13277-016-5293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5293-6

Keywords

Navigation