Skip to main content
Log in

Overexpression of miR-203 sensitizes paclitaxel (Taxol)-resistant colorectal cancer cells through targeting the salt-inducible kinase 2 (SIK2)

  • Original Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through the endogenous RNA interference machinery. Treatments with combination of chemotherapy with surgery are essential for advanced-stage colorectal cancer. However, the development of chemoresistance is a major obstacle for clinical application of anticancer drugs. In this study, we report a miR-203-SIK2 axis that involves in the regulation of Taxol sensitivity in colon cancer cells. MiR-203 is downregulated in human colon tumor specimens and cell lines compared with their normal counterparts. We report miR-203 is correlated with Taxol sensitivity: overexpression of miR-203 sensitizes colon cancer cells and the Taxol-resistant cells display downregulated miR-203 compared with Taxol-sensitive cells. We identify SIK2 as a direct target of miR-203 in colorectal cancer cells. Overexpression of miR-203 complementary pairs to the 3′ untranslated region (UTR) of SIK2, leading to the sensitization of Taxol resistant cells. In addition, miR-203 and the salt-inducible kinase 2 (SIK2) are reverse expressed in human colorectal tumors. Finally, we demonstrate recovery of SIK2 by overexpression of SIK2-desensitized Taxol-resistant cells, supporting the miR-203-mediated sensitization to Taxol, is through the inhibition of SIK2. In general, our study will provide mechanisms of the microRNA-based anti-tumor therapy to develop anti-chemoresistance drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. da Costa Vieira RA, Tramonte MS, Lopes LF. Colorectal carcinoma in the first decade of life: a systematic review. Int J Colorectal Dis. 2015;30:1001–6.

    Article  PubMed  Google Scholar 

  2. Chung KY, Saltz LB. Adjuvant therapy of colon cancer: current status and future directions. Cancer J. 2007;13:192–7.

    Article  CAS  PubMed  Google Scholar 

  3. Edwards MS, Chadda SD, Zhao Z, Barber BL, Sykes DP. A systematic review of treatment guidelines for metastatic colorectal cancer. Color Dis. 2012;14:e31–47.

    Article  CAS  Google Scholar 

  4. Troiani T, Martinelli E, Napolitano S, Morgillo F, Belli G, Cioffi L, et al. Molecular aspects of resistance to biological and non-biological drugs and strategies to overcome resistance in colorectal cancer. Curr Med Chem. 2014;21(14):1639–53.

    Article  CAS  PubMed  Google Scholar 

  5. Gustavsson B, Carlsson G, Machover D, Petrelli N, Roth A, Schmoll HJ, et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer. 2015;14:1–10.

    Article  CAS  PubMed  Google Scholar 

  6. Goodwin RA, Asmis TR. Overview of systemic therapy for colorectal cancer. Clin Colon Rectal Surg. 2009;22:251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nehate C, Jain S, Saneja A, Khare V, Alam N, Dubey RD, et al. Paclitaxel formulations: challenges and novel delivery options. Curr Drug Deliv. 2014;11:666–86.

    Article  CAS  PubMed  Google Scholar 

  8. Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and its evolving role in the management of ovarian cancer. Biomed Res Int. 2015;2015:413076.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, et al. Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci U S A. 2006;103:10166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene. 2003;22:7280–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88.

    Article  CAS  PubMed  Google Scholar 

  12. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.

    Article  CAS  PubMed  Google Scholar 

  13. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang X, Sun Y, Han S, Zhu W, Zhang H, Lian S. MiR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1. Biochem Biophys Res Commun. 2015;56:361–6.

    Article  Google Scholar 

  16. Wang C, Wang X, Liang H, Wang T, Yan X, Cao M, et al. miR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCα. PLoS One. 2013;8, e73985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiang Y, Song Y, Wang Z, Chen Y, Yue Z, Xu H, et al. Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J Gastrointest Surg. 2011;15:63–70.

    Article  PubMed  Google Scholar 

  18. Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, et al. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer. 2011;2:782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiang J, Bian C, Wang H, Huang S, Wu D. MiR-203 down-regulates Rap1A and suppresses cell proliferation, adhesion and invasion in prostate cancer. J Exp Clin Cancer Res. 2015;34:8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang F, Yang Z, Cao M, Xu Y, Li J, Chen X, et al. MiR-203 suppresses tumor growth and invasion and down-regulates MiR-21 expression through repressing Ran in esophageal cancer. Cancer Lett. 2014;342:121–9.

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Chen Y, Zhao J, Kong F, Zhang Y. miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett. 2011;304:52–9.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Wan G, Spizzo R, Ivan C, Mathur R, Hu X, et al. miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Mol Oncol. 2014;8:83–92.

    Article  CAS  PubMed  Google Scholar 

  23. Ju SY, Chiou SH, Su Y. Maintenance of the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Res. 2014;12:86–100.

    Article  CAS  PubMed  Google Scholar 

  24. Funamizu N, Lacy CR, Kamada M, Yanaga K, Manome Y. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells. Int J Oncol. 2015;47:1981–8.

    PubMed  Google Scholar 

  25. Li J, Zhu S, Tong J, Hao H, Yang J, Liu Z, et al. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma. Neuroreport. 2016;27:110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, Capalbo L, Jacamo RO, et al. SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell. 2010;18:109–21.

    Article  CAS  PubMed  Google Scholar 

  27. Bon H, Wadhwa K, Schreiner A, Osborne M, Carroll T, Ramos-Montoya A, et al. Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res. 2015;13:620–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge all the staff and faculty working in China-Japan Union Hospital of Jilin University. We thank Dr. Xuebo Chen for providing the colorectal tumor patient samples at Department of General Surgery, China-Japan Union Hospital of Jilin University. This project is supported by the Dr. Bethune youth scientific research funds from Jilin University.

Author contributions

Y.L., S.G., and X.F. designed research; Y.L., S.G., X.C., M.L., and C.M. performed research; Y.L., S.G., X.C., M.L., C.M., and X.F. analyzed data; and Y.L., S.G., X.C., and X.F. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Fang.

Ethics declarations

This study was approved by the Medical Ethics Committee of the Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China, and written informed consent was obtained from the patients or their parents prior to sample collection.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Gao, S., Chen, X. et al. Overexpression of miR-203 sensitizes paclitaxel (Taxol)-resistant colorectal cancer cells through targeting the salt-inducible kinase 2 (SIK2). Tumor Biol. 37, 12231–12239 (2016). https://doi.org/10.1007/s13277-016-5066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5066-2

Keywords

Navigation