Skip to main content

Advertisement

Log in

Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer

  • Review
  • Published:
Tumor Biology

Abstract

Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine that plays important roles in cervical tumor formation, invasion, progression, and metastasis. TGF-β1 functions as a tumor inhibitor in precancerous lesions and early stage cancers of cervix whereas as a tumor promoter in later stage. This switch from a tumor inhibitor to a tumor promoter might be due to various alterations in TGF-β signaling pathway, such as mutations or loss of expression of TGF-β receptors and SMAD proteins. Additionally, the oncoproteins of human papillomaviruses have been shown to stimulate TGF-β1 expression, which in turn suppresses host immune surveillance. Thus, in addition to driving tumor cell migration and metastasis, TGF-β1 is believed to play a key role in promoting human papillomavirus infection by weakening host immune defense. In this article, we will discuss the role of TGF-β1 in the expression, carcinogenesis, progression, and therapy in cervical cancers. A better understanding of this cytokine in cervical carcinogenesis is essential for critical evaluation of this cytokine as a potential prognostic marker and therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Jensen KE, Thomsen LT, Schmiedel S, et al. Chlamydia trachomatis and risk of cervical intraepithelial neoplasia grade 3 or worse in women with persistent human papillomavirus infection: a cohort study. Sex Transm Infect. 2014;90:550–5.

    Article  PubMed  Google Scholar 

  3. Katz LH, Li Y, Chen JS, et al. Targeting TGF-beta signaling in cancer. Expert Opin Ther Targets. 2013;17(7):743–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Principe DR, Doll JA, Bauer J, et al. TGF-beta: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106(2):djt369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neuzillet C, de Gramont A, Tijeras-Raballand A, et al. Perspectives of TGF-beta inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 2014;5(1):78–94.

    PubMed  Google Scholar 

  6. Achyut BR, Yang L. Transforming growth factor-beta in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology. 2011;141(4):1167–78.

    Article  CAS  PubMed  Google Scholar 

  7. Wu HS, Li YF, Chou CI, Yuan CC, Hung MW, Tsai LC. The concentration of serum transforming growth factor beta-1 (TGF-beta1) is decreased in cervical carcinoma patients. Cancer Invest. 2002;20(1):55–9.

    Article  PubMed  Google Scholar 

  8. Hou F, Li Z, Ma D, et al. Distribution of Th17 cells and Foxp3-expressing T cells in tumor-infiltrating lymphocytes in patients with uterine cervical cancer. Clin Chim Acta. 2012;413(23-24):1848–54.

    Article  CAS  PubMed  Google Scholar 

  9. Ding AP, Zhang Y, Wei H, Luo QS, Zhang SL. Correlation study of HPV-16 existential status with Th17/Treg cytokines. Zhonghua Yi Xue Za Zhi. 2013;93(37):2957–60.

    CAS  PubMed  Google Scholar 

  10. Fan DM, Tian XY, Wang RF, Yu JJ. The prognosis significance of TGF-beta1 and ER protein in cervical adenocarcinoma patients with stage Ib~IIa. Tumour Biol. 2014;35(11):11237–42.

    Article  CAS  PubMed  Google Scholar 

  11. Comerci Jr JT, Runowicz CD, Flanders KC, et al. Altered expression of transforming growth factor-beta 1 in cervical neoplasia as an early biomarker in carcinogenesis of the uterine cervix. Cancer. 1996;77(6):1107–14.

    Article  PubMed  Google Scholar 

  12. El-Sherif AM, Seth R, Tighe PJ, Jenkins D. Decreased synthesis and expression of TGF-beta1, beta2, and beta3 in epithelium of HPV 16-positive cervical precancer: a study by microdissection, quantitative RT-PCR, and immunocytochemistry. J Pathol. 2000;192(4):494–501.

    Article  CAS  PubMed  Google Scholar 

  13. Torng PL, Chan WY, Lin CT, Huang SC. Decreased expression of human papillomavirus E2 protein and transforming growth factor-beta1 in human cervical neoplasia as an early marker in carcinogenesis. J Surg Oncol. 2003;84(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Ding J, Pang N, et al. The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients. Diagn Pathol. 2013;8:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen ZF, Xu Q, Ding JB, Zhang Y, Du R, Ding Y. CD4+CD25+Foxp3+ Treg and TGF-beta play important roles in pathogenesis of Uygur cervical carcinoma. Eur J Gynaecol Oncol. 2012;33(5):502–7.

    CAS  PubMed  Google Scholar 

  16. Ki KD, Tong SY, Huh CY, Lee JM, Lee SK, Chi SG. Expression and mutational analysis of TGF-beta/Smads signaling in human cervical cancers. J Gynecol Oncol. 2009;20(2):117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farley J, Gray K, Nycum L, Prentice M, Birrer MJ, Jakowlew SB. Endocervical cancer is associated with an increase in the ligands and receptors for transforming growth factor-beta and a contrasting decrease in p27(Kip1). Gynecol Oncol. 2000;78(2):113–22.

    Article  CAS  PubMed  Google Scholar 

  18. Santin AD, Hermonat PL, Hiserodt JC, et al. Differential transforming growth factor-beta secretion in adenocarcinoma and squamous cell carcinoma of the uterine cervix. Gynecol Oncol. 1997;64(3):477–80.

    Article  CAS  PubMed  Google Scholar 

  19. Hazelbag S, Kenter GG, Gorter A, Fleuren GJ. Prognostic relevance of TGF-beta1 and PAI-1 in cervical cancer. Int J Cancer. 2004;112(6):1020–8.

    Article  CAS  PubMed  Google Scholar 

  20. Dickson J, Davidson SE, Hunter RD, West CM. Pretreatment plasma TGF beta 1 levels are prognostic for survival but not morbidity following radiation therapy of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2000;48(4):991–5.

    Article  CAS  PubMed  Google Scholar 

  21. Ramos-Flores C, Romero-Gutierrez T, Delgado-Enciso I, et al. Polymorphisms in the genes related to angiogenesis are associated with uterine cervical cancer. Int J Gynecol Cancer. 2013;23(7):1198–204.

    Article  PubMed  Google Scholar 

  22. Singh H, Jain M, Mittal B. Role of TGF-beta1 (-509C>T) promoter polymorphism in susceptibility to cervical cancer. Oncol Res. 2009;18(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Zhang C, Walayat S, Chen HW, Wang Y. Association between cytokine gene polymorphisms and cervical cancer in a Chinese population. Eur J Obstet Gynecol Reprod Biol. 2011;158(2):330–3.

    Article  CAS  PubMed  Google Scholar 

  24. Stanczuk GA, Tswana SA, Bergstrom S, Sibanda EN. Polymorphism in codons 10 and 25 of the transforming growth factor-beta 1 (TGF-beta1) gene in patients with invasive squamous cell carcinoma of the uterine cervix. Eur J Immunogenet. 2002;29(5):417–21.

    Article  CAS  PubMed  Google Scholar 

  25. Kim JW, Kim HS, Kim IK, et al. Transforming growth factor-beta 1 induces apoptosis through down-regulation of c-myc gene and overexpression of p27Kip1 protein in cervical carcinoma. Gynecol Oncol. 1998;69(3):230–6.

    Article  CAS  PubMed  Google Scholar 

  26. Donalisio M, Cornaglia M, Landolfo S, Lembo D. TGF-beta1 and IL-4 downregulate human papillomavirus-16 oncogene expression but have differential effects on the malignant phenotype of cervical carcinoma cells. Virus Res. 2008;132(1-2):253–6.

    Article  CAS  PubMed  Google Scholar 

  27. Choi HH, Jong HS, Hyun Song S, You Kim T, Kyeong Kim N, Bang YJ. p130 mediates TGF-beta-induced cell-cycle arrest in Rb mutant HT-3 cells. Gynecol Oncol. 2002;86(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  28. Cassar L, Li H, Jiang FX, Liu JP. TGF-beta induces telomerase-dependent pancreatic tumor cell cycle arrest. Mol Cell Endocrinol. 2010;320(1-2):97–105.

    Article  CAS  PubMed  Google Scholar 

  29. Hagemann T, Bozanovic T, Hooper S, et al. Molecular profiling of cervical cancer progression. Br J Cancer. 2007;96(2):321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hazelbag S, Gorter A, Kenter GG, van den Broek L, Fleuren G. Transforming growth factor-beta1 induces tumor stroma and reduces tumor infiltrate in cervical cancer. Hum Pathol. 2002;33(12):1193–9.

    Article  CAS  PubMed  Google Scholar 

  31. Nagura M, Matsumura N, Baba T, et al. Invasion of uterine cervical squamous cell carcinoma cells is facilitated by locoregional interaction with cancer-associated fibroblasts via activating transforming growth factor-beta. Gynecol Oncol. 2015;136:104–11.

    Article  CAS  PubMed  Google Scholar 

  32. Nuovo GJ. In situ detection of PCR-amplified metalloproteinase cDNAs, their inhibitors and human papillomavirus transcripts in cervical carcinoma cell lines. Int J Cancer. 1997;71(6):1056–60.

    Article  CAS  PubMed  Google Scholar 

  33. Yi JY, Hur KC, Lee E, Jin YJ, Arteaga CL, Son YS. TGFbeta1 -mediated epithelial to mesenchymal transition is accompanied by invasion in the SiHa cell line. Eur J Cell Biol. 2002;81(8):457–68.

    Article  CAS  PubMed  Google Scholar 

  34. Kim YM, Cho M. Activation of NADPH oxidase subunit NCF4 induces ROS-mediated EMT signaling in HeLa cells. Cell Signal. 2014;26(4):784–96.

    Article  CAS  PubMed  Google Scholar 

  35. Moon HS, Kim SC, Ahn JJ, Woo BH. Concentration of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1 (TGF-beta1) in the serum of patients with cervical cancer: prediction of response. Int J Gynecol Cancer. 2000;10(2):151–6.

    Article  PubMed  Google Scholar 

  36. Baritaki S, Sifakis S, Huerta-Yepez S, et al. Overexpression of VEGF and TGF-beta1 mRNA in Pap smears correlates with progression of cervical intraepithelial neoplasia to cancer: implication of YY1 in cervical tumorigenesis and HPV infection. Int J Oncol. 2007;31(1):69–79.

    CAS  PubMed  Google Scholar 

  37. Bequet-Romero M, Lopez-Ocejo O. Angiogenesis modulators expression in culture cell lines positives for HPV-16 oncoproteins. Biochem Biophys Res Commun. 2000;277(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  38. Torres-Poveda K, Bahena-Roman M, Madrid-Gonzalez C, et al. Role of IL-10 and TGF-beta1 in local immunosuppression in HPV-associated cervical neoplasia. World J Clin Oncol. 2014;5(4):753–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Diaz-Benitez CE, Navarro-Fuentes KR, Flores-Sosa JA, et al. CD3zeta expression and T cell proliferation are inhibited by TGF-beta1 and IL-10 in cervical cancer patients. J Clin Immunol. 2009;29(4):532–44.

    Article  CAS  PubMed  Google Scholar 

  40. Lopez-Munoz H, Escobar-Sanchez ML, Lopez-Marure R, et al. Cervical cancer cells induce apoptosis in TCD4+ lymphocytes through the secretion of TGF-beta. Arch Gynecol Obstet. 2013;287(4):755–63.

    Article  CAS  PubMed  Google Scholar 

  41. Sheu BC, Chiou SH, Lin HH, et al. Up-regulation of inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular perforin expression of tumor-infiltrating CD8+ T lymphocytes in human cervical carcinoma. Cancer Res. 2005;65(7):2921–9.

    Article  CAS  PubMed  Google Scholar 

  42. De Geest K, Bergman CA, Turyk ME, Frank BS, Wilbanks GD. Differential response of cervical intraepithelial and cervical carcinoma cell lines to transforming growth factor-beta 1. Gynecol Oncol. 1994;55(3 Pt 1):376–85.

    Article  CAS  PubMed  Google Scholar 

  43. Iancu IV, Botezatu A, Goia-Rusanu CD, et al. TGF-beta signalling pathway factors in HPV-induced cervical lesions. Roum Arch Microbiol Immunol. 2010;69(3):113–8.

    CAS  PubMed  Google Scholar 

  44. Chen T, de Vries EG, Hollema H, et al. Structural alterations of transforming growth factor-beta receptor genes in human cervical carcinoma. Int J Cancer. 1999;82(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  45. Kang SH, Won K, Chung HW, et al. Genetic integrity of transforming growth factor beta (TGF-beta) receptors in cervical carcinoma cell lines: loss of growth sensitivity but conserved transcriptional response to TGF-beta. Int J Cancer. 1998;77(4):620–5.

    Article  CAS  PubMed  Google Scholar 

  46. Diaz-Chavez J, Hernandez-Pando R, Lambert PF, Gariglio P. Down-regulation of transforming growth factor-beta type II receptor (TGF-betaRII) protein and mRNA expression in cervical cancer. Mol Cancer. 2008;7:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maliekal TT, Antony ML, Nair A, Paulmurugan R, Karunagaran D. Loss of expression, and mutations of Smad 2 and Smad 4 in human cervical cancer. Oncogene. 2003;22(31):4889–97.

    Article  CAS  PubMed  Google Scholar 

  48. Kloth JN, Kenter GG, Spijker HS, et al. Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival. Mod Pathol. 2008;21(7):866–75.

    Article  CAS  PubMed  Google Scholar 

  49. Noordhuis MG, Fehrmann RS, Wisman GB, et al. Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res. 2011;17(6):1317–30.

    Article  CAS  PubMed  Google Scholar 

  50. Lee S, Cho YS, Shim C, et al. Aberrant expression of Smad4 results in resistance against the growth-inhibitory effect of transforming growth factor-beta in the SiHa human cervical carcinoma cell line. Int J Cancer. 2001;94(4):500–7.

    Article  CAS  PubMed  Google Scholar 

  51. Baldus SE, Schwarz E, Lohrey C, et al. Smad4 deficiency in cervical carcinoma cells. Oncogene. 2005;24(5):810–9.

    Article  CAS  PubMed  Google Scholar 

  52. Klein-Scory S, Zapatka M, Eilert-Micus C, et al. High-level inducible Smad4-reexpression in the cervical cancer cell line C4-II is associated with a gene expression profile that predicts a preferential role of Smad4 in extracellular matrix composition. BMC Cancer. 2007;7:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hariharan R, Babu JM, P R, Pillai MR. Mutational analysis of Smad7 in human cervical cancer. Oncol Rep. 2009;21(4):1001–4.

  54. Peralta-Zaragoza O, Bermudez-Morales V, Gutierrez-Xicotencatl L, Alcocer-Gonzalez J, Recillas-Targa F, Madrid-Marina V. E6 and E7 oncoproteins from human papillomavirus type 16 induce activation of human transforming growth factor beta1 promoter throughout Sp1 recognition sequence. Viral Immunol. 2006;19(3):468–80.

    Article  CAS  PubMed  Google Scholar 

  55. Xu Q, Wang S, Xi L, et al. Effects of human papillomavirus type 16 E7 protein on the growth of cervical carcinoma cells and immuno-escape through the TGF-beta1 signaling pathway. Gynecol Oncol. 2006;101(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  56. Gu W, Yeo E, McMillan N, Yu C. Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther. 2011;18(12):897–905.

    Article  CAS  PubMed  Google Scholar 

  57. Woodworth CD, Notario V, DiPaolo JA. Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J Virol. 1990;64(10):4767–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Baldwin A, Pirisi L, Creek KE. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression. J Virol. 2004;78(8):3953–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shier MK, Neely EB, Ward MG, Meyers C, Howett MK. Transforming growth factor beta 1 (TGF beta 1) down-regulates expression and function of proliferation-inducing molecules in HPV-transformed cells. Anticancer Res. 1999;19(6b):4977–82.

    CAS  PubMed  Google Scholar 

  60. Shier MK, Neely EB, Ward MG, et al. Correlation of TGF beta 1 overexpression with down-regulation of proliferation-inducing molecules in HPV-11 transformed human tissue xenografts. Anticancer Res. 1999;19(6b):4969–76.

    CAS  PubMed  Google Scholar 

  61. Rorke EA, Zhang D, Choo CK, Eckert RL, Jacobberger JW. TGF-beta-mediated cell cycle arrest of HPV16-immortalized human ectocervical cells correlates with decreased E6/E7 mRNA and increased p53 and p21(WAF-1) expression. Exp Cell Res. 2000;259(1):149–57.

    Article  CAS  PubMed  Google Scholar 

  62. Deng W, Tsao SW, Kwok YK, et al. Transforming growth factor beta1 promotes chromosomal instability in human papillomavirus 16 E6E7-infected cervical epithelial cells. Cancer Res. 2008;68(17):7200–9.

    Article  CAS  PubMed  Google Scholar 

  63. Hypes MK, Pirisi L, Creek KE. Mechanisms of decreased expression of transforming growth factor-beta receptor type I at late stages of HPV16-mediated transformation. Cancer Lett. 2009;282(2):177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee DK, Kim BC, Kim IY, Cho EA, Satterwhite DJ, Kim SJ. The human papilloma virus E7 oncoprotein inhibits transforming growth factor-beta signaling by blocking binding of the Smad complex to its target sequence. J Biol Chem. 2002;277(41):38557–64.

    Article  CAS  PubMed  Google Scholar 

  65. Paulikova S, Petera J, Sirak I, et al. ATM and TGFB1 genes polymorphisms in prediction of late complications of chemoradiotherapy in patients with locally advanced cervical cancer. Neoplasma. 2014;61(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  66. Yang YC, Wang KL, Su TH, et al. Concurrent cisplatin-based chemoradiation for cervical carcinoma: tumor response, toxicity, and serum cytokine profiles. Cancer Invest. 2006;24(4):390–5.

    Article  CAS  PubMed  Google Scholar 

  67. De Ruyck K, Van Eijkeren M, Claes K, et al. TGFbeta1 polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors. Int J Radiat Oncol Biol Phys. 2006;65(4):1240–8.

    Article  CAS  PubMed  Google Scholar 

  68. Fan DM, Wang XJ, He T, et al. High expression of TGF-beta1 in the vaginal incisional margin predicts poor prognosis in patients with stage Ib-IIa cervical squamous cell carcinoma. Mol Biol Rep. 2012;39(4):3925–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents and Grant of Medical and Technology Project of Zhejiang Province (No. 2016KYA141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqiong Zhu.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Luo, H., Shen, Z. et al. Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer. Tumor Biol. 37, 7075–7083 (2016). https://doi.org/10.1007/s13277-016-5028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5028-8

Keywords

Navigation