Skip to main content

Advertisement

Log in

Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quoix E, Zalcman G, Oster JP, Westeel V, Pichon E, Lavolé A, et al. Carboplatin and weekly paclitaxel doublet chemotherapy compared with monotherapy in elderly patients with advanced non-small-cell lung cancer: IFCT-0501 randomised, phase 3 trial. Lancet. 2011;378(9796):1079–88.

    Article  CAS  PubMed  Google Scholar 

  2. Morton SW, Lee MJ, Deng ZJ, Dreaden EC, Siouve E, Shopsowitz KE, et al. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal. 2014;7(325):ra44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    Article  CAS  PubMed  Google Scholar 

  4. Ding L, Liu K, Jiang Z, Chen Q, Zhou N, Liang Y, et al. The efficacy and safety of pemetrexed plus bevacizumab in previously treated patients with advanced non-squamous non-small cell lung cancer (ns-NSCLC). Tumour Biol. 2015;36(4):2491–9.

    Article  CAS  PubMed  Google Scholar 

  5. Hu CM, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–11.

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281–90.

    Article  CAS  PubMed  Google Scholar 

  7. Song W, Tang Z, Li M, Lv S, Sun H, Deng M, et al. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater. 2014;10(3):1392–402.

    Article  CAS  PubMed  Google Scholar 

  8. Cai L, Xu G, Shi C, Guo D, Wang X, Luo J. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials. 2015;37:456–68.

    Article  CAS  PubMed  Google Scholar 

  9. Yen HC, Cabral H, Mi P, Toh K, Matsumoto Y, Liu X, et al. Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy. ACS Nano. 2014;8(11):11591–602.

    Article  CAS  PubMed  Google Scholar 

  10. Shen J, Putt KS, Visscher DW, Murphy L, Cohen C, Singhal S, et al. Assessment of folate receptor-β expression in human neoplastic tissues. Oncotarget. 2015;6(16):14700–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M, et al. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol. 2015;36(8):5727–42.

    Article  CAS  PubMed  Google Scholar 

  12. Yan JJ, Liao JZ, Lin JS, He XX. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems. Tumour Biol. 2015;36(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  13. Sequeira G, Vanzulli SI, Rojas P, Lamb C, Colombo L, May M, et al. The effectiveness of nano chemotherapeutic particles combined with mifepristone depends on the PR isoform ratio in preclinical models of breast cancer. Oncotarget. 2014;5(10):3246–60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhu L, Zhang D, Wang R, Wang P, Ming H, Badugu R, et al. Metal-dielectric waveguides for high efficiency fluorescence imaging. J Phys Chem C. 2015;119(42):24081–5.

    Article  CAS  Google Scholar 

  15. Ye WL, Du JB, Zhang BL, Na R, Song YF, Mei QB, et al. Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles. PLoS One. 2014;9(5), e97358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stevens PJ, Sekido M, Lee RJ. A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res. 2004;21(12):2153–7.

    Article  CAS  PubMed  Google Scholar 

  17. Müller C, Reddy JA, Leamon CP, Schibli R. Effects of the antifolates pemetrexed and CB3717 on the tissue distribution of (99m)Tc-EC20 in xenografted and syngeneic tumor-bearing mice. Mol Pharm. 2010;7(2):597–604.

    Article  CAS  PubMed  Google Scholar 

  18. Reddy JA, Dorton R, Dawson A, Vetzel M, Parker N, Nicoson JS, et al. In vivo structural activity and optimization studies of folate-tubulysin conjugates. Mol Pharm. 2009;6(5):1518–25.

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, Li S, Shen Q. Folic acid and cell-penetrating peptide conjugated PLGA–PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci. 2012;47(2):430–43.

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Yin H, Yan F, Sun M, Du L, Peng W, et al. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance. Oncotarget. 2015;6(5):2827–42.

    Article  PubMed  Google Scholar 

  21. He Z, Sun Y, Wang Q, Shen M, Zhu M, Li F, et al. Degradation and bio-safety evaluation of mPEG-PLGA-PLL copolymer-prepared nanoparticles. J Phys Chem C. 2015;119:3348–62.

    Article  CAS  Google Scholar 

  22. He Z, Huang J, Xu Y, Zhang X, Teng Y, Huang C, et al. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget. 2015. doi:10.18632/oncotarget.6243.

  23. Wang Y, Liu P, Qiu L, Sun Y, Zhu M, Gu L, et al. Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials. 2013;34(16):4068–77.

    Article  CAS  PubMed  Google Scholar 

  24. Qin L, Sun Y, Liu P, Wang Q, Han B, Duan Y. F127/Calcium phosphate hybrid nanoparticles: a promising vector for improving siRNA delivery and gene silencing. J Biomater Sci Polym Ed. 2013;24(15):1757–66.

    Article  CAS  PubMed  Google Scholar 

  25. Kraus P, Tamtögl A, Mayrhofer-Reinhartshuber M, Apolloner F, Gösweiner C, Miret-Artés S, et al. Surface structure of Bi(111) from helium atom scattering measurements. inelastic close-coupling formalism. J Phys Chem C. 2015;119(30):17235–42.

    Article  CAS  Google Scholar 

  26. Zhao S, Choi D, Lee T, Boyd AK, Barbara P, Van Keuren E, et al. Indium tin oxide nanowire networks as effective UV/Vis photodetection platforms. J Phys Chem C. 2015;119(26):14483–9.

    Article  CAS  Google Scholar 

  27. Bhirde AA, Hassan SA, Harr E, Chen X. Role of albumin in the formation and stabilization of nanoparticle aggregates in serum studied by continuous photon correlation spectroscopy and multiscale computer simulations. J Phys Chem C. 2014;118(29):16199–208.

    Article  CAS  Google Scholar 

  28. Anitha A, Deepa N, Chennazhi KP, Lakshmanan VK, Jayakumar R. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta. 2014;1840(9):2730–43.

    Article  CAS  PubMed  Google Scholar 

  29. He Z, Wang Q, Sun Y, Shen M, Zhu M, Gu M, et al. The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility. J Biomater Sci Polym Ed. 2014;25(9):943–64.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao H, Li Z, Yang B, Wang J, Li Y. Synthesis of dual-functional targeting probes for cancer theranostics based on iron oxide nanoparticles coated by centipede-like polymer connected with pH-responsive anticancer drug. J Biomater Sci Polym Ed. 2015;26(16):1178–89.

    Article  CAS  PubMed  Google Scholar 

  31. Trickler WJ, Munt DJ, Jain N, Joshi SS, Dash AK. Antitumor effiacy, tumor distribution and blood pharmacokinetics of chitosan/glyceryl-monooleate nanostructures containing paclitaxel. Nanomedicine (Lond). 2011;6(3):437–48.

    Article  CAS  Google Scholar 

  32. Liu D, Poon C, Lu K, He C, Lin W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat Commun. 2014;5:4182.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang E, Shen F. Blood compatibility of a ferulic acid (FA)-eluting PHBHHx system for biodegradable magnesium stent application. Mater Sci Eng C Mater Biol Appl. 2015;52:37–45.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang E, Chen H, Shen F. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med. 2010;21(7):2151–63.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Liu P, Sun Y, Gong T, Zhu M, Sun X, et al. Preparation and properties of biocompatible PS-PEG/calcium phosphate nanospheres. Nanotoxicology. 2014;9(2):190–200.

    Article  CAS  PubMed  Google Scholar 

  36. Senthilkumar S, Rajesh S, Jayalakshmi A, Mohan D. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3615–26.

    Article  CAS  PubMed  Google Scholar 

  37. Lv S, Tang Z, Li M, Lin J, Song W, Liu H, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials. 2014;35:6118–29.

    Article  CAS  PubMed  Google Scholar 

  38. Bull-Hansen B, Berstad MB, Berg K, Cao Y, Skarpen E, Fremstedal AS, et al. Photochemical activation of MH3-B1/rGel: a HER2-targeted treatment approach for ovarian cancer. Oncotarget. 2015;6(14):12436–51.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shi F, Coffey AM, Waddell KW, Chekmenev EY, Goodson BM. Nanoscale catalysts for NMR signal enhancement by reversible exchange. J Phys Chem C. 2015;119(13):7525–33.

    Article  CAS  Google Scholar 

  40. Iwamoto T, Ogawa Y, Sun L, White MS, Glowacki ED, Scharber MC, et al. Electrochemical self-assembly of nanostructured CuSCN/Rhodamine B hybrid thin film and its dye-sensitized photocathodic properties. J Phys Chem C. 2014;118(30):16581–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyu Zhang, Wenjun Chen or Jingwen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Shi, Z., Sun, W. et al. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumor Biol. 37, 7809–7821 (2016). https://doi.org/10.1007/s13277-015-4634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4634-1

Keywords

Navigation