Skip to main content

Advertisement

Log in

MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a

  • Original Article
  • Published:
Tumor Biology

Abstract

Cervical cancer is one of the most frequent gynecological malignancies in women worldwide. MicroRNA-195 (miR-195) was recently found highly expressed in cervical cancer. However, the role of miR-195 in the pathology of cervical cancer remains poorly understood. In this study, we first confirmed the downregulation of miR-195 in primary cervical cancer tissues. For the functional study, we introduced the sequences of miR-195 or miR-195 inhibitor into Hela and SiHa cervical cancer cell lines. Overexpression of miR-195 inhibited the proliferation of both Hela and SiHa cells. In contrast, reducing the endogenous miR-195 level by miR-195 inhibitor promoted the proliferation of cervical cancer cells. Flow cytometric assay showed that overexpression of miR-195 induced G1 phase arrest, whereas miR-195 inhibitor shortened G1 phase of cervical cancer cells. In addition, the suppressive role of miR-195 in cell cycle was also demonstrated by the western blot results of various cell cycle indicators, such as phosphorylated retinoblastoma (p-Rb) and proliferating cell nuclear antigen (PCNA), in the gain and loss of function experiments. Furthermore, Dual-Luciferase Reporter Assay revealed that miR-195 targeted the 3′-untranslated region of cyclin D1a transcript, such as to regulate cyclin D1 expression. In summary, our results suggest that miR-195 acts as a suppressor in the proliferation and cell cycle of cervical cancer cells by directly targeting cyclin D1a mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benard VB, Thomas CC, King J, Massetti GM, Doria-Rose VP, Saraiya M, et al. Vital signs: cervical cancer incidence, mortality, and screening—United States, 2007–2012. MMWR Morb Mortal Wkly Rep. 2014;63(44):1004–9.

    PubMed  Google Scholar 

  2. Wang SM, Qiao YL. Implementation of cervical cancer screening and prevention in China—challenges and reality. Jpn J Clin Oncol. 2015;45(1):7–11.

    Article  PubMed  Google Scholar 

  3. Scheurer ME, Tortolero-Luna G, Adler-Storthz K. Human papillomavirus infection: biology, epidemiology, and prevention. Int J Gynecol Cancer. 2005;15(5):727–46.

    Article  CAS  PubMed  Google Scholar 

  4. Dizon DS, Mackay HJ, Thomas GM, Werner TL, Kohn EC, Hess D, et al. State of the science in cervical cancer: where we are today and where we need to go. Cancer. 2014;120(15):2282–8.

    Article  PubMed  Google Scholar 

  5. Ramirez PT, Pareja R, Rendon GJ, Millan C, Frumovitz M, Schmeler KM. Management of low-risk early-stage cervical cancer: should conization, simple trachelectomy, or simple hysterectomy replace radical surgery as the new standard of care? Gynecol Oncol. 2014;132(1):254–9.

    Article  PubMed  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  8. Bhardwaj A, Singh S, Singh AP. MicroRNA-based cancer therapeutics: big hope from small RNAs. Mol Cell Pharmacol. 2010;2(5):213–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. He JF, Luo YM, Wan XH, Jiang D. Biogenesis of miRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J Biochem Mol Toxicol. 2011;25(6):404–8.

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Chen L, Xu Y, Li R, Du X. MicroRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun. 2010;400(2):236–40.

    Article  CAS  PubMed  Google Scholar 

  11. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, et al. Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer. Clin Cancer Res. 2011;17(7):1722–30.

    Article  CAS  PubMed  Google Scholar 

  12. Lin Y, Wu J, Chen H, Mao Y, Liu Y, Mao Q, et al. Cyclin-dependent kinase 4 is a novel target in microRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett. 2012;586(4):442–7.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang QQ, Xu H, Huang MB, Ma LM, Huang QJ, Yao Q, et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion. Neuro Oncol. 2012;14(3):278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  15. Sekiya Y, Ogawa T, Iizuka M, Yoshizato K, Ikeda K, Kawada N. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-beta-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol. 2011;226(10):2535–42.

    Article  CAS  PubMed  Google Scholar 

  16. Hui W, Yuntao L, Lun L, WenSheng L, ChaoFeng L, HaiYong H, et al. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1. PLoS One. 2013;8(1), e54932.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Park H, Lee MJ, Jeong JY, Choi MC, Jung SG, Joo WD, et al. Dysregulated microRNA expression in adenocarcinoma of the uterine cervix: clinical impact of miR-363-3p. Gynecol Oncol. 2014;135(3):565–72.

    Article  CAS  PubMed  Google Scholar 

  18. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20), e179.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oppitz U, Schulte S, Stopper H, Baier K, Muller M, Wulf J, et al. In vitro radiosensitivity measured in lymphocytes and fibroblasts by colony formation and comet assay: comparison with clinical acute reactions to radiotherapy in breast cancer patients. Int J Radiat Biol. 2002;78(7):611–6.

    Article  CAS  PubMed  Google Scholar 

  20. Massague J. G1 cell-cycle control and cancer. Nature. 2004;432(7015):298–306.

    Article  CAS  PubMed  Google Scholar 

  21. Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot. 2011;107(7):1127–40.

    Article  CAS  PubMed  Google Scholar 

  22. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24(4):652–7.

    Article  CAS  PubMed  Google Scholar 

  23. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251(3):499–505.

    Article  PubMed  Google Scholar 

  24. Hansen J, Bross P. A cellular viability assay to monitor drug toxicity. Methods Mol Biol. 2010;648:303–11.

    Article  CAS  PubMed  Google Scholar 

  25. Liu D, Feng X, Wu X, Li Z, Wang W, Tao Y, et al. Tumor suppressor in lung cancer 1 (TSLC1), a novel tumor suppressor gene, is implicated in the regulation of proliferation, invasion, cell cycle, apoptosis, and tumorigenicity in cutaneous squamous cell carcinoma. Tumour Biol. 2013;34(6):3773–83.

    Article  CAS  PubMed  Google Scholar 

  26. Park MT, Lee SJ. Cell cycle and cancer. J Biochem Mol Biol. 2003;36(1):60–5.

    CAS  PubMed  Google Scholar 

  27. Arato-Ohshima T, Sawa H. Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int J Cancer. 1999;83(3):387–92.

    Article  CAS  PubMed  Google Scholar 

  28. Sutherland RL, Musgrove EA. Cyclins and breast cancer. J Mammary Gland Biol Neoplasia. 2004;9(1):95–104.

    Article  PubMed  Google Scholar 

  29. Chakravarti A, Delaney MA, Noll E, Black PM, Loeffler JS, Muzikansky A, et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res. 2001;7(8):2387–95.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Nature Science Foundation of China (No. 81202047), the Program for Liaoning Excellent Talents in University (No. LJQ2013083), the Higher Specialized Research Fund for the Doctoral Program (No. 20122104110014), and the Free Researcher Project of Shengjing Hospital (No. 201302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulan Zhang.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wei, H., Yin, D. et al. MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a. Tumor Biol. 37, 4711–4720 (2016). https://doi.org/10.1007/s13277-015-4292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4292-3

Keywords

Navigation