Skip to main content

Advertisement

Log in

NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

It has been reported that nuclear factor of activated T cells (NFATC1) was up-regulated in cancers mediating malignant behaviors. However, the role of NFATC1 in ovarian cancer has not been elucidated. In the present study, we undertook to explore the clinicopathological significance of NFATC1 expression and the mechanism by which NFATC1 works in ovarian cancer. Expression status of NFATC1 was examined using immunohistochemistry. Both knockdown and re-expression of NFATC1 on ovarian cancer cells were employed to observe the effect overgrowth. It was found that NFATC1 was significantly overexpressed in ovarian cancer tissues in comparison with paired normal control tissues and that overexpression of NFATC1 was significantly associated with metastasis and poor prognosis on clinical tissue level. In in vitro ovarian cancer cell lines, we found that NFATC1 can promote proliferation up-regulating c-myc through activation of ERK1/2/p38/MAPK signal pathway. Together, the results we obtained demonstrated that NFATC1 played oncogenic role in ovarian cancer. Mechanistically, NFATC1 promoted growth of ovarian cancer cells up-regulating c-myc through activation of ERK1/2/p38/MAPK signal pathway, suggesting that NFATC1 might be used as a therapeutic target for ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gansler T, Ganz PA, Grant M, Greene FL, Johnstone P, Mahoney M, et al. Sixty years of CA: a cancer journal for clinicians. CA Cancer J Clin. 2010;60(6):345–50.

    Article  PubMed  Google Scholar 

  2. Chang SJ, Bristow RE, Chi DS, Cliby WA. Role of aggressive surgical cytoreduction in advanced ovarian cancer. Journal of gynecologic oncology. 2015.

  3. Park J, Takeuchi A, Sharma S. Characterization of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc. J Biol Chem. 1996;271(34):20914–21.

    Article  CAS  PubMed  Google Scholar 

  4. Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 2002;4(7):540–4.

    Article  CAS  PubMed  Google Scholar 

  5. Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J. 2006;25(15):3714–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halatsch ME, Low S, Mursch K, Hielscher T, Schmidt U, Unterberg A, et al. Candidate genes for sensitivity and resistance of human glioblastoma multiforme cell lines to erlotinib. Laboratory investigation. J Neurosurg. 2009;111(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Miyamoto Y, et al. Cyclosporine A and tacrolimus inhibit bladder cancer growth through down-regulation of NFATc1. Oncotarget. 2015;6(3):1582–93.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pham LV, Tamayo AT, Li C, Bueso-Ramos C, Ford RJ. An epigenetic chromatin remodeling role for NFATc1 in transcriptional regulation of growth and survival genes in diffuse large B-cell lymphomas. Blood. 2010;116(19):3899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Ishiguro H, et al. The role of NFATc1 in prostate cancer progression: cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion. Prostate. 2015;75(6):573–84.

    Article  CAS  PubMed  Google Scholar 

  10. Weissinger D, Tagscherer KE, Macher-Goppinger S, Haferkamp A, Wagener N, Roth W. The soluble Decoy Receptor 3 is regulated by a PI3K-dependent mechanism and promotes migration and invasion in renal cell carcinoma. Mol Cancer. 2013;12(1):120.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Wang Z, Li J, Zhang W, Ren F, Yue W. NFATc1 activation promotes the invasion of U251 human glioblastoma multiforme cells through COX-2. Int J Mol Med. 2015;35(5):1333–40.

    CAS  PubMed  Google Scholar 

  12. Oikawa T, Nakamura A, Onishi N, Yamada T, Matsuo K, Saya H. Acquired expression of NFATc1 downregulates E-cadherin and promotes cancer cell invasion. Cancer Res. 2013;73(16):5100–9.

    Article  CAS  PubMed  Google Scholar 

  13. Yiu GK, Kaunisto A, Chin YR, Toker A. NFAT promotes carcinoma invasive migration through glypican-6. Biochem J. 2011;440(1):157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP. Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol. 2008;28(23):7168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koenig A, Linhart T, Schlengemann K, Reutlinger K, Wegele J, Adler G, et al. NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells. Gastroenterology. 2010;138(3):1189–1199 e1181-1182.

    Article  PubMed  Google Scholar 

  16. Lee SJ, Lee K, Yang X, Jung C, Gardner T, Kim HS, et al. NFATc1 with AP-3 site binding specificity mediates gene expression of prostate-specific-membrane-antigen. J Mol Biol. 2003;330(4):749–60.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Kang X, Cao S, Cheng H, Wang D, Geng J. Calcineurin/NFATc1 pathway contributes to cell proliferation in hepatocellular carcinoma. Dig Dis Sci. 2012;57(12):3184–8.

    Article  CAS  PubMed  Google Scholar 

  18. Murray OT, Wong CC, Vrankova K, Rigas B. Phospho-sulindac inhibits pancreatic cancer growth: NFATc1 as a drug resistance candidate. Int J Oncol. 2014;44(2):521–9.

    CAS  PubMed  Google Scholar 

  19. Tripathi P, Wang Y, Coussens M, Manda KR, Casey AM, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33(14):1840–9.

    Article  CAS  PubMed  Google Scholar 

  20. Baker M. Reproducibility crisis: blame it on the antibodies. Nature. 2015;521(7552):274–6.

    Article  CAS  PubMed  Google Scholar 

  21. Helsby MA, Fenn JR, Chalmers AD. Reporting research antibody use: how to increase experimental reproducibility. F1000Research. 2013;2:153.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present wok was supported by National Science Foundation of China (81473636), Jiangsu 333 plan (BRA2014345), Jiangsu Medical Key Personal Scholarship (BR2011091), China Postdoctoral Science Foundation (2013 M542577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Wang.

Ethics declarations

Conflicts of interest

None

Additional information

Wenwen Xu and Junjie Gu contributed equally to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Gu, J., Ren, Q. et al. NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. Tumor Biol. 37, 4493–4500 (2016). https://doi.org/10.1007/s13277-015-4245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4245-x

Keywords

Navigation