Skip to main content
Log in

Single nucleotide polymorphism rs11669203 in TGFBR3L is associated with the risk of neuroblastoma in a Chinese population

  • Original Article
  • Published:
Tumor Biology

Abstract

With a primary mortality, neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Amplification of the MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog) oncogene is observed in 20–30 % of NB cases, a feature which also characterizes a highly aggressive subtype of the disease. However, the systematic study of association between single nucleotide polymorphisms (SNPs) in MYCN-regulated genes and the risk of NB has not been investigated. In the current study, we scanned a set of 16 SNPs located within known or predicted MYCN binding sites in a cohort of 247 patients of Chinese origin with neuroblastic family tumors, including neuroblastoma (NB), ganglioneuroma (GN), and ganglioneuroblastoma (GNB), and in 290 cancer-free controls to determine whether any of the tested SNPs are associated with neuroblastic family tumors. We found that the rs11669203 G>C polymorphism, located in TGFBR3L promoter, is significantly associated with the risk of NB. Further, we found that this association is site specific to adrenal NB compared to non-adrenal NB. In addition, transcriptome analysis indicated that increased expression of TGFBR3L is strongly correlated with poor survival. The SNP rs11669203 located at the MYCN binding site of TGFBR3L is significantly associated with elevated risk of NB, and abnormal MYCN-regulated TGFBR3L expression may contribute to NB oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med. 2015;66:49–63.

    Article  CAS  PubMed  Google Scholar 

  2. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363:1324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mosse YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Capasso M, Diskin S, Cimmino F, et al. Common genetic variants in NEFL influence gene expression and neuroblastoma risk. Cancer Res. 2014;74:6913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maris JM, Mosse YP, Bradfield JP, et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med. 2008;358:2585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Capasso M, Devoto M, Hou C, et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat Genet. 2009;41:718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang K, Diskin SJ, Zhang H, et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature. 2011;469:216–20.

    Article  CAS  PubMed  Google Scholar 

  9. le Nguyen B, Diskin SJ, Capasso M, et al. Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility Loci. PLoS Genet. 2011;7:e1002026.

    Article  CAS  PubMed Central  Google Scholar 

  10. Diskin SJ, Capasso M, Schnepp RW, et al. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat Genet. 2012;44:1126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jie L. Candidate gene association analysis of neuroblastoma in Chinese children strengthens the role of LMO1. PlosOne. 2015;10:e0127856.

    Article  CAS  Google Scholar 

  12. Buechner J, Einvik C. N-myc and noncoding RNAs in neuroblastoma. Mol Cancer Res. 2012;10:1243–53.

    Article  CAS  PubMed  Google Scholar 

  13. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8:976–90.

    Article  CAS  PubMed  Google Scholar 

  14. Muth D, Ghazaryan S, Eckerle I, et al. Transcriptional repression of SKP2 is impaired in MYCN-amplified neuroblastoma. Cancer Res. 2010;70:3791–802.

    Article  CAS  PubMed  Google Scholar 

  15. Bordow SB, Norris MD, Haber PS, Marshall GM, Haber M. Prognostic significance of MYCN oncogene expression in childhood neuroblastoma. J Clin Oncol. 1998;16:3286–94.

    CAS  PubMed  Google Scholar 

  16. Buechner J, Tomte E, Haug BH, et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer. 2011;105:296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohn SL, London WB, Huang D, et al. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J Clin Oncol. 2000;18:3604–13.

    CAS  PubMed  Google Scholar 

  18. Tang XX, Zhao H, Kung B, et al. The MYCN enigma: significance of MYCN expression in neuroblastoma. Cancer Res. 2006;66:2826–33.

    Article  CAS  PubMed  Google Scholar 

  19. Westermann F, Muth D, Benner A, et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol. 2008;9:R150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang J, Rychahou PG, Ishola TA, Mourot JM, Evers BM, Chung DH. N-myc is a novel regulator of PI3K-mediated VEGF expression in neuroblastoma. Oncogene. 2008;27:3999–4007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hogarty MD, Norris MD, Davis K, et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res. 2008;68:9735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fletcher JI, Gherardi S, Murray J, et al. N-Myc regulates expression of the detoxifying enzyme glutathione transferase GSTP1, a marker of poor outcome in neuroblastoma. Cancer Res. 2012;72:845–53.

    Article  CAS  PubMed  Google Scholar 

  23. Su Z, Fang H, Hong H, et al. An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol. 2014;15:523.

    Article  CAS  PubMed  Google Scholar 

  24. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.

    Article  PubMed  Google Scholar 

  25. Huang L, Wu C, Yu D, et al. Identification of common variants in BRCA2 and MAP2K4 for susceptibility to sporadic pancreatic cancer. Carcinogenesis. 2013;34:1001–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wilzen A, Krona C, Sveinbjornsson B, et al. ERBB3 is a marker of a ganglioneuroblastoma/ganglioneuroma-like expression profile in neuroblastic tumours. Mol Cancer. 2013;12:70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer. 1999;86:349–63.

    Article  CAS  PubMed  Google Scholar 

  28. Vo KT, Matthay KK, Neuhaus J, et al. Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol. 2014;32:3169–76.

    Article  PubMed  PubMed Central  Google Scholar 

  29. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  30. da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    Article  CAS  Google Scholar 

  31. Moreau LA, McGrady P, London WB, et al. Does MYCN amplification manifested as homogeneously staining regions at diagnosis predict a worse outcome in children with neuroblastoma? A Children’s Oncology Group study. Clin Cancer Res. 2006;12:5693–7.

    Article  CAS  PubMed  Google Scholar 

  32. Marshall GM, Carter DR, Cheung BB, et al. The prenatal origins of cancer. Nat Rev Cancer. 2014;14:277–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zimmerman KA, Yancopoulos GD, Collum RG, et al. Differential expression of myc family genes during murine development. Nature. 1986;319:780–3.

    Article  CAS  PubMed  Google Scholar 

  34. Slack A, Chen Z, Tonelli R, et al. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci U S A. 2005;102:731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hansford LM, Thomas WD, Keating JM, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci U S A. 2004;101:12664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calao M, Sekyere EO, Cui HJ, et al. Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation. Oncogene. 2013;32:3616–26.

    Article  CAS  PubMed  Google Scholar 

  37. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lodrini M, Oehme I, Schroeder C, et al. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma. Nucleic Acids Res. 2013;41:6018–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Westermark UK, Wilhelm M, Frenzel A, Henriksson MA. The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol. 2011;21:256–66.

    Article  CAS  PubMed  Google Scholar 

  40. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013;3:a014415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  CAS  PubMed  Google Scholar 

  42. Stallings RL, Nair P, Maris JM, et al. High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. Cancer Res. 2006;66:3673–80.

    Article  CAS  PubMed  Google Scholar 

  43. Lin SJ, Hu Y, Zhu J, Woodruff TK, Jardetzky TS. Structure of betaglycan zona pellucida (ZP)-C domain provides insights into ZP-mediated protein polymerization and TGF-beta binding. Proc Natl Acad Sci U S A. 2011;108:5232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiater E, Harrison CA, Lewis KA, Gray PC, Vale WW. Identification of distinct inhibin and transforming growth factor beta-binding sites on betaglycan: functional separation of betaglycan co-receptor actions. J Biol Chem. 2006;281:17011–22.

    Article  CAS  PubMed  Google Scholar 

  45. Iolascon A, Giordani L, Borriello A, et al. Reduced expression of transforming growth factor-beta receptor type III in high stage neuroblastomas. Br J Cancer. 2000;82:1171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mestdagh P, Bostrom AK, Impens F, et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell. 2010;40:762–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCune BK, Patterson K, Chandra RS, Kapur S, Sporn MB, Tsokos M. Expression of transforming growth factor-beta isoforms in small round cell tumors of childhood. An immunohistochemical study. Am J Pathol. 1993;142:49–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Turco A, Scarpa S, Coppa A, et al. Increased TGFbeta type II receptor expression suppresses the malignant phenotype and induces differentiation of human neuroblastoma cells. Exp Cell Res. 2000;255:77–85.

    Article  CAS  PubMed  Google Scholar 

  49. Knelson EH, Gaviglio AL, Tewari AK, Armstrong MB, Mythreye K, Blobe GC. Type III TGF-beta receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma. J Clin Invest. 2013;123:4786–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by National Natural Science Foundation of China (81472369) and Clinical Research Special Foundation by Wu Jieping Medical Foundation (320. 6750. 12398).

Conflicts of interest

None

Disclaimer

The information in these materials is not a formal dissemination of information by FDA and does not represent agency position or policy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dianke Yu or Yongli Guo.

Additional information

Yaqiong Jin and Huanmin Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 6349 kb)

ESM 2

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Wang, H., Han, W. et al. Single nucleotide polymorphism rs11669203 in TGFBR3L is associated with the risk of neuroblastoma in a Chinese population. Tumor Biol. 37, 3739–3747 (2016). https://doi.org/10.1007/s13277-015-4192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4192-6

Keywords

Navigation