Skip to main content
Log in

Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

Curcumin has anticancer functions in various tumors. It has been shown to induce apoptosis through p53-dependent pathways. p73 gene is a member of the p53 family which encodes both a tumor suppressor (transactivation-competent p73 (TAp73)) and a putative oncogene (dominant-negative p73 (DNp73)); the former shares similarity with the tumor suppressor p53, and the latter behaves as dominant-negative proteins that interfere with the activity of TAp73. To understand the p73-dependent mechanisms that are engaged during curcumin-induced apoptosis, we established a p73 overexpression cell models using p53-deficient Hep3B cells (Hep3BTAp73/DNp73). Our results demonstrated that curcumin at concentrations of 40 and 80 μM induced DNA damage, increased TAp73/DNp73 ratio, and also led to apoptosis in the Hep3BTAp73/DNp73 cells. The apoptotic cell death was concurrent with the loss of mitochondrial membrane potential; release of cytochrome c from mitochondria; and the cleavage of caspase 9, caspase 3, and poly(ADP-ribose) polymerase (PARP). These results demonstrated a p73-dependent mechanism for curcumin-induced apoptosis that involves the mitochondria-mediated pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAX:

BCL-2-associated X protein

BCL-2:

B-cell leukemia/lymphoma 2

MMP:

Mitochondrial membrane potential

TAp73:

Transactivation-competent p73

DNp73:

Dominant-negative p73

References

  1. Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M. Chemopreventive potential of curcumin in prostate cancer. Genes Nutr. 2010;5:61–74.

    Article  CAS  PubMed  Google Scholar 

  2. Shureiqi I, Baron JA. Curcumin chemoprevention: the long road to clinical translation. Cancer Prev Res (Phila). 2011;4:296–8.

    Article  CAS  Google Scholar 

  3. Shehzad A, Lee J, Lee YS. Curcumin in various cancers. Biofactors. 2013;39:56–68.

    Article  CAS  PubMed  Google Scholar 

  4. Tian F, Song M, Xu PR, Liu HT, Xue LX. [Curcumin promotes apoptosis of esophageal squamous carcinoma cell lines through inhibition of NF-kappaB signaling pathway]. Ai Zheng. 2008;27:566–70.

    CAS  PubMed  Google Scholar 

  5. Swamy MV, Citineni B, Patlolla JM, Mohammed A, Zhang Y, Rao CV. Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids. Nutr Cancer. 2008;60 Suppl 1:81–9.

    Article  CAS  PubMed  Google Scholar 

  6. Khar A, Ali AM, Pardhasaradhi BV, Varalakshmi CH, Anjum R, Kumari AL. Induction of stress response renders human tumor cell lines resistant to curcumin-mediated apoptosis: role of reactive oxygen intermediates. Cell Stress Chaperones. 2001;6:368–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006;15:165–74.

    Article  CAS  PubMed  Google Scholar 

  8. Lee HE, Han N, Kim MA, Lee HS, Yang HK, Lee BL, et al. DNA damage response-related proteins in gastric cancer: ATM, Chk2 and p53 expression and their prognostic value. Pathobiology. 2014;81:25–35.

    Article  CAS  PubMed  Google Scholar 

  9. Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7:979–87.

    Article  CAS  PubMed  Google Scholar 

  10. Yu X, Robinson JF, Gribble E, Hong SW, Sidhu JS, Faustman EM. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways. Toxicol Appl Pharmacol. 2008;233:389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li GY, Xie P, Li HY, Hao L, Xiong Q, Qiu T. Involment of p53, Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis. Environ Toxicol. 2011;26:111–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lin W, Tongyi S. Role of Bax/Bcl-2 family members in green tea polyphenol induced necroptosis of p53-deficient Hep3B cells. Tumour Biol. 2014;35:8065–75.

    Article  CAS  PubMed  Google Scholar 

  13. Vuletic A, Konjevic G, Milanovic D, Ruzdijic S, Jurisic V. Antiproliferative effect of 13-cis-retinoic acid is associated with granulocyte differentiation and decrease in cyclin B1 and Bcl-2 protein levels in G0/G1 arrested HL-60 cells. Pathol Oncol Res. 2010;16:393–401.

    Article  CAS  PubMed  Google Scholar 

  14. Jurisic V, Bogdanovic G, Kojic V, Jakimov D, Srdic T. Effect of TNF-alpha on Raji cells at different cellular levels estimated by various methods. Ann Hematol. 2006;85:86–94.

    Article  CAS  PubMed  Google Scholar 

  15. He ZY, Shi CB, Wen H, Li FL, Wang BL, Wang J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest. 2011;29:208–13.

    Article  CAS  PubMed  Google Scholar 

  16. Song G, Mao YB, Cai QF, Yao LM, Ouyang GL, Bao SD. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz J Med Biol Res. 2005;38:1791–8.

    Article  CAS  PubMed  Google Scholar 

  17. Guo LD, Chen XJ, Hu YH, Yu ZJ, Wang D, Liu JZ. Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway. Phytother Res. 2013;27:422–30.

    Article  CAS  PubMed  Google Scholar 

  18. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Fiore R, Marcatti M, Drago-Ferrante R, D'Anneo A, Giuliano M, Carlisi D, et al. Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells. Bone. 2014;60:198–212.

    Article  CAS  PubMed  Google Scholar 

  20. Urist M, Tanaka T, Poyurovsky MV, Prives C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 2004;18:3041–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zaika E, Wei J, Yin D, Andl C, Moll U, El-Rifai W, et al. p73 protein regulates DNA damage repair. Faseb J. 2011;25:4406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferru A, Denis S, Guilhot J, Gibelin H, Tourani JM, Kraimps JL, et al. Expression of TAp73 and DeltaNp73 isoform transcripts in thyroid tumours. Eur J Surg Oncol. 2006;32:228–30.

    Article  CAS  PubMed  Google Scholar 

  23. Lo Iacono M, Monica V, Saviozzi S, Ceppi P, Bracco E, Papotti M, et al. p63 and p73 isoform expression in non-small cell lung cancer and corresponding morphological normal lung tissue. J Thorac Oncol. 2011;6:473–81.

    Article  PubMed  Google Scholar 

  24. Bailey SG, Cragg MS, Townsend PA. Family friction as DeltaNp73 antagonises p73 and p53. Int J Biochem Cell Biol. 2011;43:482–6.

    Article  CAS  PubMed  Google Scholar 

  25. Zawacka-Pankau J, Kostecka A, Sznarkowska A, Hedstrom E, Kawiak A. p73 tumor suppressor protein: a close relative of p53 not only in structure but also in anti-cancer approach? Cell Cycle. 2010;9:720–8.

    Article  CAS  PubMed  Google Scholar 

  26. Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F, et al. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 2001;8:1213–23.

    Article  CAS  PubMed  Google Scholar 

  27. Benosman S, Meng X, Von Grabowiecki Y, Palamiuc L, Hritcu L, Gross I, et al. Complex regulation of p73 isoforms after alteration of amyloid precursor polypeptide (APP) function and DNA damage in neurons. J Biol Chem. 2011;286:43013–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rufini A, Agostini M, Grespi F, Tomasini R, Sayan BS, Niklison-Chirou MV, et al. p73 in cancer. Genes Cancer. 2011;2:491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lunghi P, Costanzo A, Mazzera L, Rizzoli V, Levrero M, Bonati A. The p53 family protein p73 provides new insights into cancer chemosensitivity and targeting. Clin Cancer Res. 2009;15:6495–502.

    Article  CAS  PubMed  Google Scholar 

  30. Oswald C, Stiewe T. In good times and bad: p73 in cancer. Cell Cycle. 2008;7:1726–31.

    Article  CAS  PubMed  Google Scholar 

  31. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem. 1999;274:22932–40.

    Article  CAS  PubMed  Google Scholar 

  32. Napso T, Fares F. Zebularine induces prolonged apoptosis effects via the caspase-3/PARP pathway in head and neck cancer cells. Int J Oncol. 2014;44:1971–9.

    CAS  PubMed  Google Scholar 

  33. Mohan S, Abdul AB, Abdelwahab SI, Al-Zubairi AS, Sukari MA, Abdullah R, et al. Typhonium flagelliforme induces apoptosis in CEMss cells via activation of caspase-9, PARP cleavage and cytochrome c release: its activation coupled with G0/G1 phase cell cycle arrest. J Ethnopharmacol. 2010;131:592–600.

    Article  PubMed  Google Scholar 

  34. Zaika AI, Slade N, Erster SH, Sansome C, Joseph TW, Pearl M, et al. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med. 2002;196:765–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanchez NS, Konigsberg M. Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem Mol Biol Educ. 2006;34:209–12.

    Article  CAS  PubMed  Google Scholar 

  36. Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol. 2009;25:5–32.

    Article  CAS  PubMed  Google Scholar 

  37. Hartig S, Fries S, Balcarcel RR. Reduced mitochondrial membrane potential and metabolism correspond to acute chloroform toxicity of in vitro hepatocytes. J Appl Toxicol. 2005;25:310–7.

    Article  CAS  PubMed  Google Scholar 

  38. Nicholls DG. Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol Biol. 2012;810:119–33.

    Article  CAS  PubMed  Google Scholar 

  39. Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, et al. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neurooncol. 2007;85:263–70.

    Article  CAS  PubMed  Google Scholar 

  40. Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512:334–40.

    Article  CAS  PubMed  Google Scholar 

  41. Roy SS, Chakraborty P, Bhattacharya S. Intervention in cyclophosphamide induced oxidative stress and DNA damage by a flavonyl-thiazolidinedione based organoselenocyanate and evaluation of its efficacy during adjuvant therapy in tumor bearing mice. Eur J Med Chem. 2014;73:195–209.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Wang F, Tang T, Guo C. The role of PARP1 in the DNA damage response and its application in tumor therapy. Front Med. 2012;6:156–64.

    Article  PubMed  Google Scholar 

  43. Ronald S, Awate S, Rath A, Carroll J, Galiano F, Dwyer D, et al. Phenothiazine inhibitors of TLKs affect double-strand break repair and DNA damage response recovery and potentiate tumor killing with radiomimetic therapy. Genes Cancer. 2013;4:39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Itamochi H, Kigawa J, Akeshima R, Sato S, Kamazawa S, Takahashi M, et al. Mechanisms of cisplatin resistance in clear cell carcinoma of the ovary. Oncology. 2002;62:349–53.

    Article  CAS  PubMed  Google Scholar 

  45. Schloffer D, Horky M, Kotala V, Wesierska-Gadek J. Induction of cell cycle arrest and apoptosis in human cervix carcinoma cells during therapy by cisplatin. Cancer Detect Prev. 2003;27:481–93.

    Article  CAS  PubMed  Google Scholar 

  46. da Silva GN, de Castro Marcondes JP, de Camargo EA, da Silva Passos Junior GA, Sakamoto-Hojo ET, Salvadori DM. Cell cycle arrest and apoptosis in TP53 subtypes of bladder carcinoma cell lines treated with cisplatin and gemcitabine. Exp Biol Med (Maywood). 2010;235:814–24.

    Article  CAS  Google Scholar 

  47. Behmand B, Wagner JR, Sanche L, Hunting DJ. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons. J Phys Chem B. 2014;118:4803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ummat A, Rechkoblit O, Jain R, Roy Choudhury J, Johnson RE, Silverstein TD, et al. Structural basis for cisplatin DNA damage tolerance by human polymerase eta during cancer chemotherapy. Nat Struct Mol Biol. 2012;19:628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radic Biol Med. 2008;45:1403–12.

    Article  CAS  PubMed  Google Scholar 

  50. Blakemore LM, Boes C, Cordell R, Manson MM. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351–60.

    Article  CAS  PubMed  Google Scholar 

  51. Cao J, Liu Y, Jia L, Jiang LP, Geng CY, Yao XF, et al. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. J Agric Food Chem. 2008;56:12059–63.

    Article  CAS  PubMed  Google Scholar 

  52. Lu JJ, Cai YJ, Ding J. Curcumin induces DNA damage and caffeine-insensitive cell cycle arrest in colorectal carcinoma HCT116 cells. Mol Cell Biochem. 2011;354:247–52.

    Article  CAS  PubMed  Google Scholar 

  53. Cortes-Gutierrez EI, Hernandez-Garza F, Garcia-Perez JO, Davila-Rodriguez MI, Aguado-Barrera ME, Cerda-Flores RM. Evaluation of DNA single and double strand breaks in women with cervical neoplasia based on alkaline and neutral comet assay techniques. J Biomed Biotechnol. 2012;2012:385245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benitez-Bribiesca L, Sanchez-Suarez P. Oxidative damage, bleomycin, and gamma radiation induce different types of DNA strand breaks in normal lymphocytes and thymocytes. A comet assay study. Ann N Y Acad Sci. 1999;887:133–49.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou M, Gu L, Li F, Zhu Y, Woods WG, Findley HW. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Pharmacol Exp Ther. 2002;303:124–31.

    Article  CAS  PubMed  Google Scholar 

  56. Chao C, Saito S, Kang J, Anderson CW, Appella E, Xu Y. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. Embo J. 2000;19:4967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moll UM, Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res. 2004;2:371–86.

    CAS  PubMed  Google Scholar 

  58. Ozaki T, Nakagawara A. p73, a sophisticated p53 family member in the cancer world. Cancer Sci. 2005;96:729–37.

    Article  CAS  PubMed  Google Scholar 

  59. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (No. 82042282) and grants from Natural Science Foundation of Shandong Province (No. ZR2014HL106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xie, H., Gao, F. et al. Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumor Biol. 37, 4203–4212 (2016). https://doi.org/10.1007/s13277-015-4029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4029-3

Keywords

Navigation