Skip to main content
Log in

Downregulation of pyrroline-5-carboxylate reductase-2 induces the autophagy of melanoma cells via AMPK/mTOR pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Melanoma is the most aggressive form of skin cancer and causes 50,000 deaths annually worldwide. The roles of proline-dependent process and autophagy have both been reported in studies on melanoma. In the present study, we focused on the effect of pyrroline-5-carboxylate reductase-2 (PYCR2) on inducing autophagy process in melanoma. The expression of PYCR2 was regulated by an RNAi technique, and the cell proliferation of A375 cell line was determined by methyl thiazolyl tetrazolium test; the effect of PYCR2 on the apoptosis process and AMPK/mTOR pathway was evaluated by flow cytometry assay and Western blot. It was found that silence of PYCR2 resulted in the decrease of proliferative ability and activation of AMPK/mTOR-induced autophagy of A375 cells. PYCR2 silencing also activated AMPK/mTOR pathway in another melanoma cell line, CHL-1. However, the overexpression of PYCR2 seemed to make no difference to the cell viability and targeted pathway. Our results offered a preliminary illustration on the mechanism of the PYCR2-dependent autophagy and showed that PYCR2 was a potential therapeutic target of melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Foletto MC, Haas SE. Cutaneous melanoma: new advances in treatment. An Bras Dermatol. 2014;89(2):301–10.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Naser N. Cutaneous melanoma: a 30-year-long epidemiological study conducted in a city in southern Brazil, from 1980–2009. An Bras Dermatol. 2011;86(5):932–41.

    Article  PubMed  Google Scholar 

  3. Corazzari M, Fimia GM, Lovat P, Piacentini M, editors. Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications 2013: Elsevier.

  4. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851–7.

    Article  CAS  PubMed  Google Scholar 

  5. Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26(11):1131–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rastrelli M, Tropea S, Pigozzo J, Bezzon E, Campana LG, Stramare R, et al. Melanoma m1: diagnosis and therapy. In vivo. 2014;28(3):273–85.

    CAS  PubMed  Google Scholar 

  7. Balch CM, Gershenwald JE, S-j S, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  9. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.

    Article  CAS  PubMed  Google Scholar 

  10. Roomi MW, Ivanov V, Netke S, Kalinovsky T, Niedzwiecki A, Rath M. In vivo and in vitro antitumor effect of ascorbic acid, lysine, proline and green tea extract on human melanoma cell line A2058. In vivo. 2006;20(1):25–32.

    CAS  PubMed  Google Scholar 

  11. Rath M, Pauling L. Plasmin-induced proteolysis and the role of apoprotein (a), lysine and synthetic lysine analogs. J Orthomolecular Med. 1992;7(1):17–23.

    Google Scholar 

  12. Phang JM, Donald SP, Pandhare J, Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids. 2008;35(4):681–90.

    Article  CAS  PubMed  Google Scholar 

  13. Hersey P, Zhang XD. Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell & melanoma Res. 2008;21(3):358–67.

    Article  CAS  Google Scholar 

  14. Lazova R, Klump V, Pawelek J. Autophagy in cutaneous malignant melanoma. J Cutan Pathol. 2010;37(2):256–68.

    Article  PubMed  Google Scholar 

  15. Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res. 2012;18(2):370–9.

    Article  CAS  PubMed  Google Scholar 

  16. Fernández-Barral A, Orgaz JL, Gomez V, Del Peso L, Calzada MJ, Jiménez B. Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism. PLoS One. 2012;7(3), e32989.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lau WS, Chen WF, Chan RYK, Guo DA, Wong MS. Mitogen‐activated protein kinase (MAPK) pathway mediates the oestrogen‐like activities of ginsenoside Rg1 in human breast cancer (MCF‐7) cells. Br J Pharmacol. 2009;156(7):1136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, et al. utophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010;285(14):10850–61. doi:10.1074/jbc.M109.080796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Ingeniis J, Ratnikov B, Richardson AD, Scott DA, Aza-Blanc P, De SK, et al. Functional specialization in proline biosynthesis of melanoma. PLoS One. 2012;7(9), e45190.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schwartz LM, Smith SW, Jones ME, Osborne BA. Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci. 1993;90(3):980–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12:1542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin Z-H, Ravikumar B, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  23. Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med. 2008;44(4):671–81. doi:10.1016/j.freeradbiomed.2007.10.054.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Alfano JR, Becker DF. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. J Bacteriol. 2015;197(3):431–40. doi:10.1128/JB.02282-14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Di Stasi D, Vallacchi V, Campi V, Ranzani T, Daniotti M, Chiodini E, et al. DHCR24 gene expression is upregulated in melanoma metastases and associated to resistance to oxidative stress-induced apoptosis. Int J Cancer. 2005;115(2):224–30. doi:10.1002/ijc.20885.

    Article  PubMed  Google Scholar 

  26. Cotter MA, Thomas J, Cassidy P, Robinette K, Jenkins N, Florell SR, et al. N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of ultraviolet-induced melanoma in mice. Clin Cancer Res. 2007;13(19):5952–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32(1):2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meley D, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, Helmond MTJ, Codogno P, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281(46):34870–9.

    Article  CAS  PubMed  Google Scholar 

  29. Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V, et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol. 2010;41(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  30. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal. 2000;19(21):5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5.

    Article  CAS  PubMed  Google Scholar 

  33. Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004;36(12):2491–502.

    Article  CAS  PubMed  Google Scholar 

  35. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81272987, 81373075, 81371748).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Li or Yunsheng Xu.

Additional information

Rongying Ou and Xueqi Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 15 kb)

Table S2

(DOCX 15 kb)

Table S3

(DOCX 15 kb)

Table S4

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, R., Zhang, X., Cai, J. et al. Downregulation of pyrroline-5-carboxylate reductase-2 induces the autophagy of melanoma cells via AMPK/mTOR pathway. Tumor Biol. 37, 6485–6491 (2016). https://doi.org/10.1007/s13277-015-3927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3927-8

Keywords

Navigation