Skip to main content

Advertisement

Log in

P50-associated COX-2 extragenic RNA (PACER) overexpression promotes proliferation and metastasis of osteosarcoma cells by activating COX-2 gene

  • Original Article
  • Published:
Tumor Biology

Abstract

P50-associated cyclooxygenase-2 (COX-2) extragenic RNA (PACER) is a novel long noncoding RNA that has been found to activate the COX-2 gene, which may function as an oncogene in osteosarcoma. However, the role of PACER and the relationship between PACER and COX-2 in osteosarcoma progression have been unknown until now. Here, we examined the expression levels of PACER in clinical tumor samples and human osteosarcoma cell lines, assessed the functions of PACER in osteosarcoma cell proliferation and invasion, and then explored the mechanism of PACER dysregulation in osteosarcoma. The results showed that PACER was overexpressed in osteosarcoma tissues and cell lines compared with normal tissues and osteoblasts, respectively. PACER knockdown inhibited the proliferation and invasion of human osteosarcoma cells. Downregulation of PACER significantly suppressed the expression of COX-2, and the effects of PACER on cell proliferation and invasion were rescued by COX-2 overexpression. Furthermore, COX-2 activation by PACER was NF-κB-dependent. The regulation of PACER by CCCTC-binding factor (CTCF) was associated with DNA methylation status. Taken together, these findings suggest that PACER promotes proliferation and metastasis of osteosarcoma cells by activating the COX-2 gene and its own expression was influenced by DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32(6):473–80.

    Article  CAS  PubMed  Google Scholar 

  2. Gutschner T, Hammerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl). 2013;91(7):791–801.

    Article  CAS  Google Scholar 

  3. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood. 2009;113(11):2526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.

    Article  CAS  PubMed  Google Scholar 

  6. Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134(3):281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 2015;36(3):1477–86.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Q, Geng PL, Yin P, Wang XL, Jia JP, Yao J. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev. 2013;14(4):2311–5.

    Article  PubMed  Google Scholar 

  9. Wang B, Su Y, Yang Q, Lv D, Zhang W, Tang K, et al. Overexpression of long non-coding RNA HOTAIR promotes tumor growth and metastasis in human osteosarcoma. Mol Cells. 2015;38:5.

    Article  CAS  Google Scholar 

  10. Krawczyk M, Emerson BM. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. Elife. 2014;3:e01776.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271(52):33157–60.

    Article  CAS  PubMed  Google Scholar 

  12. Nzeako UC, Gores GJ. Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer. 2002;94(6):1903–4.

    Article  PubMed  Google Scholar 

  13. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A. 1997;94(7):3336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Z, He M, Xiao Z, Wu H, Wu Y. Quantitative assessment of the association of COX-2 (cyclooxygenase-2) immunoexpression with prognosis in human osteosarcoma: a meta-analysis. PLoS One. 2013;8(12):e82907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiao G, Ren T, Lu Q, Sun Y, Lou Z, Peng X, et al. Prognostic significance of cyclooxygenase-2 in osteosarcoma: a meta-analysis. Tumour Biol. 2013;34(5):2489–95.

    Article  CAS  PubMed  Google Scholar 

  16. Lee EJ, Choi EM, Kim SR, Park JH, Kim H, Ha KS, et al. Cyclooxygenase-2 promotes cell proliferation, migration and invasion in U2OS human osteosarcoma cells. Exp Mol Med. 2007;39(4):469–76.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Q, Wang C, Zhu J, Wang L, Dong S, Zhang G, et al. RNAi-mediated knockdown of cyclooxygenase2 inhibits the growth, invasion and migration of SaOS2 human osteosarcoma cells: a case control study. J Exp Clin Cancer Res. 2011;30:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naruse T, Nishida Y, Hosono K, Ishiguro N. Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis. 2006;27(3):584–92.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Zhu L, He H, Zhu S, Zhang W, Liu X, et al. NF-kappa B mediated up-regulation of CCCTC-binding factor in pediatric acute lymphoblastic leukemia. Mol Cancer. 2014;13:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fiorentino FP, Giordano A. The tumor suppressor role of CTCF. J Cell Physiol. 2012;227(2):479–92.

    Article  CAS  PubMed  Google Scholar 

  21. Kang JY, Song SH, Yun J, Jeon MS, Kim HP, Han SW, et al. Disruption of CTCF/cohesin-mediated high-order chromatin structures by DNA methylation downregulates PTGS2 expression. Oncogene. 2015

  22. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T. Structure of the human cyclo-oxygenase-2 gene. Biochem J. 1994;302(3):723–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haifeng Wei or Jianru Xiao.

Additional information

Ming Qian and Xinghai Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, M., Yang, X., Li, Z. et al. P50-associated COX-2 extragenic RNA (PACER) overexpression promotes proliferation and metastasis of osteosarcoma cells by activating COX-2 gene. Tumor Biol. 37, 3879–3886 (2016). https://doi.org/10.1007/s13277-015-3838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3838-8

Keywords

Navigation