Skip to main content

Advertisement

Log in

Oxidative stress induced by low-dose doxorubicin promotes the invasiveness of osteosarcoma cell line U2OS in vitro

  • Research Article
  • Published:
Tumor Biology

Abstract

Reactive oxygen species (ROS) are known to mediate doxorubicin (DOX)-induced apoptosis and are the major cause of DOX toxicity. We introduce a novel in vitro phenomenon of osteosarcoma (OS) cell line caused by low-dose DOX-induced oxidative stress. Human osteosarcoma cell line U2OS was used for the experiments. Hydrogen peroxide (H2O2) and the antioxidant compound N-acetylcysteine (NAC) were used to investigate the involvement of oxidative stress. In proliferation assays, low dose of DOX (below 200 nM) did not affect U2OS proliferation significantly for up to 48 h. In MatrigelTM invasion assay, DOX increased the invasiveness of U2OS at around 100 nM, which is a subclinical concentration. Quantitative real-time polymerase chain reaction and gelatin zymography showed increased MMP-9 expression and increased MMP-9 enzymatic activity, respectively, in the presence of DOX doses that increased the invasiveness of U2OS. H2O2, a representative source of ROS, also increased the invasiveness of U2OS as DOX did, with similar patterns. However, when the cells were pre-treated with NAC, no DOX- or H2O2-mediated increase of invasiveness or MMP-9 expression was evident. The results suggest that oxidative stress induced by low-dose DOX promotes the invasiveness of osteosarcoma cell line U2OS in vitro, through MMP-9 induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med. 1986;314:1600–6.

    Article  CAS  PubMed  Google Scholar 

  2. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–41.

    Article  PubMed  Google Scholar 

  3. Jaffe N, Puri A, Gelderblom H. Osteosarcoma: evolution of treatment paradigms. Sarcoma. 2013;2013:203531.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    Article  PubMed  Google Scholar 

  5. Legha SS, Benjamin RS, Mackay B, Ewer M, Wallace S, Valdivieso M, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96:133–9.

    Article  CAS  PubMed  Google Scholar 

  6. Skubitz KM. Phase ii trial of pegylated-liposomal doxorubicin (doxil) in sarcoma. Cancer Invest. 2003;21:167–76.

    Article  CAS  PubMed  Google Scholar 

  7. Fruehauf JP, Meyskens Jr FL. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13:789–94.

    Article  CAS  PubMed  Google Scholar 

  8. Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namlos HM, Meza-Zepeda LA, et al. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and mirnas associated with aggressive cancer phenotypes. Br J Cancer. 2013;109:2228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SM, Lee H, Park YS, Lee Y, Seo SW. Erk5 regulates invasiveness of osteosarcoma by inducing mmp-9. J Orthop Res. 2012;30:1040–4.

    Article  CAS  PubMed  Google Scholar 

  10. McHowat J, Swift LM, Arutunyan A, Sarvazyan N. Clinical concentrations of doxorubicin inhibit activity of myocardial membrane-associated, calcium-independent phospholipase a(2). Cancer Res. 2001;61:4024–9.

    CAS  PubMed  Google Scholar 

  11. Graat HC, Witlox MA, Schagen FH, Kaspers GJ, Helder MN, Bras J, et al. Different susceptibility of osteosarcoma cell lines and primary cells to treatment with oncolytic adenovirus and doxorubicin or cisplatin. Br J Cancer. 2006;94:1837–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trebunova M, Laputkova G, Slaba E, Lacjakova K, Verebova A. Effects of docetaxel, doxorubicin and cyclophosphamide on human breast cancer cell line mcf-7. Anticancer Res. 2012;32:2849–54.

    CAS  PubMed  Google Scholar 

  13. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008;118:789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwakami S, Misu H, Takeda T, Sugimori M, Matsugo S, Kaneko S, et al. Concentration-dependent dual effects of hydrogen peroxide on insulin signal transduction in h4iiec hepatocytes. PLoS One. 2011;6:e27401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988;48:4827–33.

    CAS  PubMed  Google Scholar 

  16. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–14.

    Article  CAS  PubMed  Google Scholar 

  17. Shapira J, Gotfried M, Lishner M, Ravid M. Reduced cardiotoxicity of doxorubicin by a 6-hour infusion regimen. A prospective randomized evaluation. Cancer. 1990;65:870–3.

    Article  CAS  PubMed  Google Scholar 

  18. Ewer MS, Jaffe N, Ried H, Zietz HA, Benjamin RS. Doxorubicin cardiotoxicity in children: comparison of a consecutive divided daily dose administration schedule with single dose (rapid) infusion administration. Med Pediatr Oncol. 1998;31:512–5.

    Article  CAS  PubMed  Google Scholar 

  19. Lipshultz SE, Giantris AL, Lipsitz SR, Kimball Dalton V, Asselin BL, Barr RD, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 acute lymphoblastic leukemia protocol. J Clin Oncol. 2002;20:1677–82.

    Article  CAS  PubMed  Google Scholar 

  20. Darrabie MD, Arciniegas AJ, Mantilla JG, Mishra R, Vera MP, Santacruz L, et al. Exposing cardiomyocytes to subclinical concentrations of doxorubicin rapidly reduces their creatine transport. Am J Physiol Heart Circ Physiol. 2012;303:H539–48.

    Article  CAS  PubMed  Google Scholar 

  21. Greene RF, Collins JM, Jenkins JF, Speyer JL, Myers CE. Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Res. 1983;43:3417–21.

    CAS  PubMed  Google Scholar 

  22. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  23. Shi Y, Moon M, Dawood S, McManus B, Liu PP. Mechanisms and management of doxorubicin cardiotoxicity. Herz. 2011;36:296–305.

    Article  CAS  PubMed  Google Scholar 

  24. Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003;73:2047–58.

    Article  CAS  PubMed  Google Scholar 

  25. Fu Z, Guo J, Jing L, Li R, Zhang T, Peng S. Enhanced toxicity and ros generation by doxorubicin in primary cultures of cardiomyocytes from neonatal metallothionein-i/ii null mice. Toxicol In Vitro. 2010;24:1584–91.

    Article  CAS  PubMed  Google Scholar 

  26. Weaver AM. Regulation of cancer invasion by reactive oxygen species and tks family scaffold proteins. Sci Signal. 2009;2:pe56.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L, et al. Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem. 2010;285:38832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harimaya K, Tanaka K, Matsumoto Y, Sato H, Matsuda S, Iwamoto Y. Antioxidants inhibit tnfalpha-induced motility and invasion of human osteosarcoma cells: possible involvement of nfkappab activation. Clin Exp Metastasis. 2000;18:121–9.

    Article  CAS  PubMed  Google Scholar 

  29. Quiles JL, Huertas JR, Battino M, Mataix J, Ramirez-Tortosa MC. Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002;180:79–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI12C1065).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Soo Kim or Sung Wook Seo.

Additional information

Han-Soo Kim and Sung Wook Seo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.H., Choi, Y.J., Lee, H. et al. Oxidative stress induced by low-dose doxorubicin promotes the invasiveness of osteosarcoma cell line U2OS in vitro. Tumor Biol. 37, 1591–1598 (2016). https://doi.org/10.1007/s13277-015-3702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3702-x

Keywords

Navigation