Skip to main content
Log in

RETRACTED ARTICLE: Interaction between TNFR1 and TNFR2 dominates the clinicopathologic features of human hypopharyneal carcinoma

  • Research Article
  • Published:
Tumor Biology

This article was retracted on 20 April 2017

Abstract

Although the expression of tumor necrosis factor receptors (TNFRs) has been associated with clinicopathologic features of some other cancers, their roles in hypopharyngeal squamous cell carcinoma (HPSCC) have not been documented. Forty-five HPSCC specimens were analyzed for the expression of TNFR1 and TNFR2 and its relationship with clinicopathologic factors. Interaction between the two receptors and its effects on TNF-α was investigated by neutralizing TNFR1 and upregulation of TNFR2. The results indicated that, in HPSCC specimens, the expression of TNFR1 but not TNFR2 is associated with clinical staging, T stage, cervical lymph node metastasis, and histologic grade in HPSCC. In Fadu cells, when conjugating with its receptors, TNF-α mediates proliferation effects, and neutralizing TNFR1 and/or upregulating TNFR2 evokes proliferation-inhibiting and apoptosis-inducing effects and potentiates cisplatin (DDP)-induced growth inhibition and apoptosis induction. In conclusion, interaction of TNFR1 with TNFR2 determines the biological characters of HPSCC, and TNFR1 may dominate this process. Moreover, interaction between the two receptors plays important roles in determining the fates of HPSCC cells and thus may serve as a therapeutic target for developing new therapeutic strategies for HPSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dou YL, Lin JP, Liu FE, Wang LY, Shu HH, Jiang N, et al. Midazolam inhibits the proliferation of human head and neck squamous carcinoma cells by downregulating p300 expression. Tumor Biol. 2014;35(8):7499–504.

    Article  CAS  Google Scholar 

  2. Nishimura H, Sasaki R, Yoshida K, Miyawaki D, Okamoto Y, Kiyota N, et al. Radiotherapy for Stage I or II hypopharyngeal carcinoma. J Radiat Res. 2012;53(6):892–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yu Y, Wang XL, Xu ZG, Fan CC, Li Q. Prognostic value of lymph node ratio in hypopharyngeal squamous cell carcinoma after chemoradiotherapy. Chin Med J (Engl). 2013;126(21):4139–44.

    Google Scholar 

  4. Chu PY, Chang SY. Reconstruction of the hypopharynx after surgical treatment of squamous cell carcinoma. J Chin Med Assoc. 2009;72(7):351–5.

    Article  PubMed  Google Scholar 

  5. Krstevska V, Stojkovski I, Zafirova-Ivanovska B, Crvenkova S. Prognostic factors in patients with advanced hypopharyngeal squamous cell carcinoma treated with concurrent chemoradiotherapy. J BUON. 2012;17(2):327–36.

    CAS  PubMed  Google Scholar 

  6. Zhu G, Cai G, Liu Y, Tan H, Yu C, Huang M, et al. Quantitative iTRAQ LC-MS/MS proteomics reveals transcription factor crosstalk and regulatory networks in hypopharyngeal squamous cell carcinoma. J Cancer. 2014;5(7):525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilson DD, Rahimi AS, Saylor DK, Stelow EB, Jameson MJ, Shonka DC, et al. p16 not a prognostic marker for hypopharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2012;138(6):556–61.

    Article  PubMed  Google Scholar 

  8. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today. 1992;13(5):151–3.

    Article  CAS  PubMed  Google Scholar 

  9. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–8.

    Article  CAS  PubMed  Google Scholar 

  10. Ardestani S, Li B, Deskins DL, Wu H, Massion PP, Young PP. Membrane versus soluble isoforms of TNF-alpha exert opposing effects on tumor growth and survival of tumor-associated myeloid cells. Cancer Res. 2013;73(13):3938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Secchiero P, Gonelli A, Carnevale E, Corallini F, Rizzardi C, Zacchigna S, et al. Evidence for a proangiogenic activity of TNF-related apoptosis-inducing ligand. Neoplasia. 2004;6(4):364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ziprin P, Ridgway PF, Pfistermuller KL, Peck DH, Darzi AW. ICAM-1 mediated tumor-mesothelial cell adhesion is modulated by IL-6 and TNF-alpha: a potential mechanism by which surgical trauma increases peritoneal metastases. Cell Commun Adhes. 2003;10(2):141–54.

    Article  CAS  PubMed  Google Scholar 

  13. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, et al. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell. 1990;61(2):351–9.

    Article  CAS  PubMed  Google Scholar 

  14. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 2003;278(51):51613–21.

    Article  CAS  PubMed  Google Scholar 

  15. White LE, Santora RJ, Cui Y, Moore FA, Hassoun HT. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury. Am J Physiol Lung Cell Mol Physiol. 2012;303(5):L449–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Ren Physiol. 2003;285(4):F610–618.

    Article  CAS  Google Scholar 

  17. Park B, Sung B, Yadav VR, Chaturvedi MM, Aggarwal BB. Triptolide, histone acetyltransferase inhibitor, suppresses growth and chemosensitizes leukemic cells through inhibition of gene expression regulated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK pathway. Biochem Pharmacol. 2011;82(9):1134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruspi G, Schmidt EM, McCann F, Feldmann M, Williams RO, Stoop AA, et al. TNFR2 increases the sensitivity of ligand-induced activation of the p38 MAPK and NF-κB pathways and signals TRAF2 protein degradation in macrophages. Cell Signal. 2014;26(4):683–90.

    Article  CAS  PubMed  Google Scholar 

  19. Kondo S, Sauder DN. Tumor necrosis factor (TNF) receptor type 1 (p55) is a main mediator for TNF-alpha-induced skin inflammation. Eur J Immunol. 1997;27(7):1713–8.

    Article  CAS  PubMed  Google Scholar 

  20. Dobrzycka B, Terlikowski SJ, Garbowicz M, Niklińska W, Bernaczyk PS, Nikliński J, et al. Tumor necrosis factor-alpha and its receptors in epithelial ovarian cancer. Folia Histochem Cytobiol. 2009;47(4):609–13.

    PubMed  Google Scholar 

  21. Nakayama S, Yokote T, Tsuji M, Akioka T, Miyoshi T, Hirata Y, et al. TNF-alpha receptor 1 expression predicts poor prognosis of diffuse large b-cell lymphoma, not otherwise specified. Am J Surg Pathol. 2014;38(8):1138–46.

    PubMed  Google Scholar 

  22. Chiechi A, Novello C, Magagnoli G, Petricoin 3rd EF, Deng J, Benassi MS, et al. Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res. 2013;19(9):2473–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature. 2002;416(6878):345–7.

    Article  PubMed  Google Scholar 

  24. Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG, et al. Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene. 2007;26(10):1385–97.

    Article  CAS  PubMed  Google Scholar 

  25. Isonishi S, Shiotsuka S, Ochiai K, Yasuda M, Terashima Y. Tumor necrosis factor-alpha (TNF alpha) enhances cisplatin cytotoxicity to ovarian carcinoma xenografts. Oncol Rep. 1996;3(6):1049–53.

    CAS  PubMed  Google Scholar 

  26. Benedetti G, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M. TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochem Pharmacol. 2013;85(2):274–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research work of this paper is supported by National Natural Science Fund of China (grant number 30340005, 30371521).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Li.

Additional information

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

An erratum to this article is available at http://dx.doi.org/10.1007/s13277-017-5487-6.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, X., Lu, X. et al. RETRACTED ARTICLE: Interaction between TNFR1 and TNFR2 dominates the clinicopathologic features of human hypopharyneal carcinoma. Tumor Biol. 36, 9421–9429 (2015). https://doi.org/10.1007/s13277-015-3684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3684-8

Keywords

Navigation