Skip to main content

Advertisement

Log in

Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gherardi E, Rota E, Calandra S, Genova R, Tamborino A. Relationship among the concentrations of serum lipoproteins and changes in their chemical composition in patients with untreated nephrotic syndrome. Eur J Clin Invest. 1977;7(6):563–70.

    Article  CAS  PubMed  Google Scholar 

  2. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7(9):659–72. doi:10.1038/nrc2193.

    Article  CAS  PubMed  Google Scholar 

  3. Jordan VC, Murphy CS. Endocrine pharmacology of antiestrogens as antitumor agents. Endocr Rev. 1990;11(4):578–610.

    Article  CAS  PubMed  Google Scholar 

  4. Sheen YY, Ruh TS, Mangel WF, Katzenellenbogen BS. Antiestrogenic potency and binding characteristics of the triphenylethylene H1285 in MCF-7 human breast cancer cells. Cancer Res. 1985;45(9):4192–9.

    CAS  PubMed  Google Scholar 

  5. Gee JM, Harper ME, Hutcheson IR, Madden TA, Barrow D, Knowlden JM, et al. The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology. 2003;144(11):5105–17. doi:10.1210/en.2003-0705en.2003-0705.

    Article  CAS  PubMed  Google Scholar 

  6. Hoskins JM, Carey LA, McLeod HL. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer. 2009;9(8):576–86. doi:10.1038/nrc2683nrc2683.

    Article  CAS  PubMed  Google Scholar 

  7. Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005;23(11):2469–76. doi:10.1200/JCO.2005.01.172.

    Article  CAS  PubMed  Google Scholar 

  8. Shi L, Dong B, Li Z, Lu Y, Ouyang T, Li J, et al. Expression of ER-{alpha}36, a novel variant of estrogen receptor {alpha}, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol. 2009;27(21):3423–9. doi:10.1200/JCO.2008.17.2254JCO.2008.17.2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Honma N, Horii R, Iwase T, Saji S, Younes M, Takubo K, et al. Clinical importance of estrogen receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J Clin Oncol. 2008;26(22):3727–34. doi:10.1200/JCO.2007.14.296826/22/3727.

    Article  PubMed  Google Scholar 

  10. Viedma-Rodriguez R, Baiza-Gutman L, Salamanca-Gomez F, Diaz-Zaragoza M, Martinez-Hernandez G, Ruiz Esparza-Garrido R, et al. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep. 2014. doi:10.3892/or.2014.3190.

    PubMed  Google Scholar 

  11. Viedma-Rodriguez R, Baiza-Gutman LA, Garcia-Carranca A, Moreno-Fierros L, Salamanca-Gomez F, Arenas-Aranda D. Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells. Int J Oncol. 2013;43(6):177786. doi:10.3892/ijo.2013.2127.

    Google Scholar 

  12. Lopez J, Hesling C, Prudent J, Popgeorgiev N, Gadet R, Mikaelian I, et al. Src tyrosine kinase inhibits apoptosis through the Erk1/2-dependent degradation of the death accelerator Bik. Cell Death Differ. 2012;19(9):1459–69. doi:10.1038/cdd.2012.21cdd201221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu Y, Li J, Lee AS. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 2007;67(8):3734–40. doi:10.1158/0008-5472.CAN-06-4594.

    Article  CAS  PubMed  Google Scholar 

  14. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.

    Article  CAS  PubMed  Google Scholar 

  15. Schaefer MH, Fontaine JF, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA. HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS One. 2012;7(2):e31826. doi:10.1371/journal.pone.0031826PONE-D-11-20814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi:10.1101/gr.123930313/11/2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajput S, Kumar BN, Sarkar S, Das S, Azab B, Santhekadur PK, et al. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS One. 2013;8(4):e61342. doi:10.1371/journal.pone.0061342PONE-D-12-38938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pouliot LM, Chen YC, Bai J, Guha R, Martin SE, Gottesman MM, et al. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res. 2012;72(22):5945–55. doi:10.1158/0008-5472.CAN-12-14000008-5472.CAN-12-1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chu SH, Liu YW, Zhang L, Liu B, Li L, Shi JZ. Regulation of survival and chemoresistance by HSP90AA1 in ovarian cancer SKOV3 cells. Mol Biol Rep. 2013;40(1):1–6. doi:10.1007/s11033-012-1930-3.

    Article  CAS  PubMed  Google Scholar 

  20. Moody SE, Schinzel AC, Singh S, Izzo F, Strickland MR, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2014. doi:10.1038/onc.2014.153onc2014153.

    PubMed  PubMed Central  Google Scholar 

  21. Carraway 3rd KL. E3 ubiquitin ligases in ErbB receptor quantity control. Semin Cell Dev Biol. 2010;21(9):936–43. doi:10.1016/j.semcdb.2010.09.006S1084-9521(10)00153-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu B, Wen X, Cheng Y. Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis. 2013;4:e892. doi:10.1038/cddis.2013.422cddis2013422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Privette LM, Petty EM. CHFR: a novel mitotic checkpoint protein and regulator of tumorigenesis. Transl Oncol. 2008;1(2):57–64.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jordan NJ, Dutkowski CM, Barrow D, Mottram HJ, Hutcheson IR, Nicholson RI, et al. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res. 2014;16(1):R12. doi:10.1186/bcr3604bcr3604.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bergamaschi A, Christensen BL, Katzenellenbogen BS. Reversal of endocrine resistance in breast cancer: interrelationships among 14-3-3zeta, FOXM1, and a gene signature associated with mitosis. Breast Cancer Res. 2011;13(3):R70. doi:10.1186/bcr2913bcr2913.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Frasor J, Chang EC, Komm B, Lin CY, Vega VB, Liu ET, et al. Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006;66(14):7334–40. doi:10.1158/0008-5472.CAN-05-4269.

    Article  CAS  PubMed  Google Scholar 

  27. Zeitz MJ, Ay F, Heidmann JD, Lerner PL, Noble WS, Steelman BN, et al. Genomic interaction profiles in breast cancer reveal altered chromatin architecture. PLoS One. 2013;8(9):e73974. doi:10.1371/journal.pone.0073974PONE-D-13-13446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, et al. RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. 2014;33(27):3528–37. doi:10.1038/onc.2013.328onc2013328.

    Article  CAS  PubMed  Google Scholar 

  29. Dutta S, Bandyopadhyay C, Bottero V, Veettil MV, Wilson L, Pins MR, et al. Angiogenin interacts with the plasminogen activation system at the cell surface of breast cancer cells to regulate plasmin formation and cell migration. Mol Oncol. 2014;8(3):483–507. doi:10.1016/j.molonc.2013.12.017S1574-7891(13)00189-0.

    Article  CAS  PubMed  Google Scholar 

  30. Nagashima K, Shumway SD, Sathyanarayanan S, Chen AH, Dolinski B, Xu Y, et al. Genetic and pharmacological inhibition of PDK1 in cancer cells: characterization of a selective allosteric kinase inhibitor. J Biol Chem. 2011;286(8):6433–48. doi:10.1074/jbc.M110.156463M110.156463.

    Article  CAS  PubMed  Google Scholar 

  31. Gamero AM, Young MR, Mentor-Marcel R, Bobe G, Scarzello AJ, Wise J, et al. STAT2 contributes to promotion of colorectal and skin carcinogenesis. Cancer Prev Res (Phila). 2010;3(4):495–504. doi:10.1158/1940-6207.CAPR-09-01051940-6207.CAPR-09-0105.

    Article  CAS  Google Scholar 

  32. Chin YR, Yoshida T, Marusyk A, Beck AH, Polyak K, Toker A. Targeting Akt3 signaling in triple-negative breast cancer. Cancer Res. 2014;74(3):964–73. doi:10.1158/0008-5472.CAN-13-21750008-5472.CAN-13-2175.

    Article  CAS  PubMed  Google Scholar 

  33. Rehman SK, Li SH, Wyszomierski SL, Wang Q, Li P, Sahin O, et al. 14-3-3zeta orchestrates mammary tumor onset and progression via miR-221-mediated cell proliferation. Cancer Res. 2014;74(1):363–73. doi:10.1158/0008-5472.CAN-13-20160008-5472.CAN-13-2016.

    Article  CAS  PubMed  Google Scholar 

  34. Neal CL, Yao J, Yang W, Zhou X, Nguyen NT, Lu J, et al. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res. 2009;69(8):3425–32. doi:10.1158/0008-5472.CAN-08-27650008-5472.CAN-08-2765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ballesta A, Lopez J, Popgeorgiev N, Gonzalo P, Doumic M, Gillet G. Data-driven modeling of SRC control on the mitochondrial pathway of apoptosis: implication for anticancer therapy optimization. PLoS Comput Biol. 2013;9(4):e1003011. doi:10.1371/journal.pcbi.1003011PCOMPBIOL-D-12-01842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGlynn LM, Kirkegaard T, Edwards J, Tovey S, Cameron D, Twelves C, et al. Ras/Raf-1/MAPK pathway mediates response to tamoxifen but not chemotherapy in breast cancer patients. Clin Cancer Res. 2009;15(4):1487–95. doi:10.1158/1078-0432.CCR-07-496715/4/1487.

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez-Munoz A, Gallego E, de Luque V, Perez-Rivas LG, Vicioso L, Ribelles N, et al. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer. BMC Cancer. 2010;10:136. doi:10.1186/1471-2407-10-1361471-2407-10-136.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roy S, McPherson RA, Apolloni A, Yan J, Lane A, Clyde-Smith J, et al. 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol Cell Biol. 1998;18(7):3947–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leung EY, Kim JE, Askarian-Amiri M, Joseph WR, McKeage MJ, Baguley BC. Hormone resistance in Two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis, and increased sensitivity to cytotoxic drugs. Front Oncol. 2014;4:221. doi:10.3389/fonc.2014.00221.

    PubMed  PubMed Central  Google Scholar 

  40. Faridi J, Wang L, Endemann G, Roth RA. Expression of constitutively active AKT3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo. Clin Cancer Res. 2003;9(8):2933–9.

    CAS  PubMed  Google Scholar 

  41. Corum DG, Tsichlis PN, Muise-Helmericks RC. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1. FASEB J. 2014;28(1):395–407. doi:10.1096/fj.13-235382fj.13-235382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schoenlein PV, Periyasamy-Thandavan S, Samaddar JS, Jackson WH, Barrett JT. Autophagy facilitates the progression of ERalpha-positive breast cancer cells to antiestrogen resistance. Autophagy. 2009;5(3):400–3.

    Article  CAS  PubMed  Google Scholar 

  43. Hamilton DH, Huang B, Fernando RI, Tsang KY, Palena C. WEE1 inhibition alleviates resistance to immune attack of tumor cells undergoing epithelial-mesenchymal transition. Cancer Res. 2014;74(9):2510–9. doi:10.1158/0008-5472.CAN-13-18940008-5472.CAN-13-1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Danes CG, Wyszomierski SL, Lu J, Neal CL, Yang W, Yu D. 14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Res. 2008;68(6):1760–7. doi:10.1158/0008-5472.CAN-07-317768/6/1760.

    Article  CAS  PubMed  Google Scholar 

  45. Matta A, Siu KW, Ralhan R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets. 2012;16(5):515–23. doi:10.1517/14728222.2012.668185.

    Article  CAS  PubMed  Google Scholar 

  46. van Hemert MJ, Steensma HY, van Heusden GP. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays. 2001;23(10):936–46. doi:10.1002/bies.1134.

    Article  PubMed  Google Scholar 

  47. Tzivion G, Gupta VS, Kaplun L, Balan V. 14-3-3 proteins as potential oncogenes. Semin Cancer Biol. 2006;16(3):203–13. doi:10.1016/j.semcancer.2006.03.004.

    Article  CAS  PubMed  Google Scholar 

  48. Coleman TR, Dunphy WG. Cdc2 regulatory factors. Curr Opin Cell Biol. 1994;6(6):877–82.

    Article  CAS  PubMed  Google Scholar 

  49. Lal S, Burkhart RA, Beeharry N, Bhattacharjee V, Londin ER, Cozzitorto JA, et al. HuR posttranscriptionally regulates WEE1: implications for the DNA damage response in pancreatic cancer cells. Cancer Res. 2014;74(4):1128–40. doi:10.1158/0008-5472.CAN-13-191574/4/1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghiasi N, Habibagahi M, Rosli R, Ghaderi A, Yusoff K, Hosseini A, et al. Tumour suppressive effects of WEE1 gene silencing in breast cancer cells. Asian Pac J Cancer Prev. 2013;14(11):6605–11.

    Article  Google Scholar 

  51. Magnussen GI, Holm R, Emilsen E, Rosnes AK, Slipicevic A, Florenes VA. High expression of Wee1 is associated with poor disease-free survival in malignant melanoma: potential for targeted therapy. PLoS One. 2012;7(6):e38254. doi:10.1371/journal.pone.0038254PONE-D-12-03007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244–57. doi:10.1016/j.ccr.2010.08.011S1535-6108(10)00308-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jorge Ramírez-Salcedo and collaborators for their technical assistance in the microarray analysis. This study was performed in partial fulfillment of the requirements for the Ph.D. degree in Biomedical Sciences of RV-R, who was the recipient of doctoral fellowship provided by CONACyT-México (grant no. 207148), at the Universidad Nacional Autónoma de México. This study was supported by grants Salud-2007-785-063 from CONACyT-México and PAPIIT, DGAPA, UNAM, project IN223014.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubí Viedma-Rodríguez.

Additional information

Diego Arenas-Aranda passed away last 2014 (1958–2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viedma-Rodríguez, R., Ruiz Esparza-Garrido, R., Baiza-Gutman, L.A. et al. Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells. Tumor Biol. 36, 6991–7005 (2015). https://doi.org/10.1007/s13277-015-3374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3374-6

Keywords

Navigation