Skip to main content

Advertisement

Log in

Activation of FGF receptor signaling promotes invasion of non-small-cell lung cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The molecular regulation of metastasis of non-small-cell lung cancer (NSCLC) remains not completely defined. Here we showed significant higher MMP26 in the resected NSCLC than adjacent healthy tissue from the patients. Moreover, a strong correlation between MMP26 and the phosphorylated fibroblast growth factor receptor 1 (FGFR1) was detected. To examine the causal relationship between activated FGFR signaling and MMP26, we studied a human NSCLC cell line, A549. We found that FGF1-induced FGFR1 phosphorylation in A549 cells activated MMP26, resulting in an increase in cancer invasiveness. Inhibition of FGFR1 phosphorylation abolished FGF1-stimulated MMP26 activation, suggesting that activation of FGFR signaling pathway in NSCLC promotes cancer metastasis through MMP26. To define the signal transduction cascades downstream of FGFR1 activation for MMP26 activation, we used specific inhibitors for PI3K, ERK/MAPK, and JNK, respectively, to the FGF1-stimulated A549 cells. We found that only inhibition of JNK significantly decreased the activation of MMP26 in response to FGF1 stimulation, suggesting that activation of FGFR1 signaling may activate JNK to activate MMP26 in NSCLC. Our study thus highlights FGFR signaling pathway and MMP26 as novel therapeutic targets for NSCLC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zarogoulidis K, Zarogoulidis P, Darwiche K, Boutsikou E, Machairiotis N, Tsakiridis K, et al. Treatment of non-small cell lung cancer (nsclc). J Thorac Dis. 2013;5:S389–96.

    PubMed  PubMed Central  Google Scholar 

  2. Mitsudomi T, Suda K, Yatabe Y. Surgery for nsclc in the era of personalized medicine. Nat Rev Clin Oncol. 2013;10:235–44.

    Article  CAS  PubMed  Google Scholar 

  3. Pallis AG, Syrigos KN. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of nsclc. Lung Cancer. 2013;80:120–30.

    Article  CAS  PubMed  Google Scholar 

  4. Jian H, Zhao Y, Liu B, Lu S. Sema4b inhibits mmp9 to prevent metastasis of non-small cell lung cancer. Tumour Biol. 2014;35:11051–6.

    Article  CAS  PubMed  Google Scholar 

  5. Pei J, Lou Y, Zhong R, Han B. Mmp9 activation triggered by epidermal growth factor induced foxo1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.

    Article  CAS  PubMed  Google Scholar 

  6. Takaishi H, Kimura T, Dalal S, Okada Y, D’Armiento J. Joint diseases and matrix metalloproteinases: a role for mmp-13. Curr Pharm Biotechnol. 2008;9:47–54.

    Article  CAS  PubMed  Google Scholar 

  7. Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (mmp-1, mmp-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002;4:157–64.

    Article  CAS  PubMed  Google Scholar 

  8. Balbin M, Pendas AM, Uria JA, Jimenez MG, Freije JP, Lopez-Otin C. Expression and regulation of collagenase-3 (mmp-13) in human malignant tumors. APMIS. 1999;107:45–53.

    Article  CAS  PubMed  Google Scholar 

  9. Li D. Peaking of mmp-26 and timp-4 marks invasive transition in prostate cancer. Cell Res. 2006;16:741.

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto H, Vinitketkumnuen A, Adachi Y, Taniguchi H, Hirata T, Miyamoto N, et al. Association of matrilysin-2 (mmp-26) expression with tumor progression and activation of mmp-9 in esophageal squamous cell carcinoma. Carcinogenesis. 2004;25:2353–60.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Zhao H, Wang Y, Lin Y, Tan Y, Fang X, et al. Non-small cell lung cancer invasion and metastasis promoted by mmp-26. Mol Med Rep. 2011;4:1201–9.

    CAS  PubMed  Google Scholar 

  12. Li L, Mei TH, Zhou XD, Zhang XG. Expression and clinical significance of matrix metalloproteinase (mmp)-26 protein in non-small cell lung cancer. Ai Zheng. 2009;28:60–3.

    PubMed  Google Scholar 

  13. Friesel R, Maciag T. Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb Haemost. 1999;82:748–54.

    CAS  PubMed  Google Scholar 

  14. Jaye M, Schlessinger J, Dionne CA. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim Biophys Acta. 1992;1135:185–99.

    Article  CAS  PubMed  Google Scholar 

  15. Fujimoto J, Hori M, Ichigo S, Tamaya T. Expressions of the fibroblast growth factor family (fgf-1, −2 and −4) mrna in endometrial cancers. Tumour Biol. 1996;17:226–33.

    Article  CAS  PubMed  Google Scholar 

  16. Soundararajan P, Fawcett JP, Rafuse VF. Guidance of postural motoneurons requires mapk/erk signaling downstream of fibroblast growth factor receptor 1. J Neurosci. 2010;30:6595–606.

    Article  CAS  PubMed  Google Scholar 

  17. Kuslak SL, Marker PC. Fibroblast growth factor receptor signaling through mek-erk is required for prostate bud induction. Differentiation. 2007;75:638–51.

    Article  CAS  PubMed  Google Scholar 

  18. Williamson AJ, Dibling BC, Boyne JR, Selby P, Burchill SA. Basic fibroblast growth factor-induced cell death is effected through sustained activation of p38mapk and up-regulation of the death receptor p75ntr. J Biol Chem. 2004;279:47912–28.

    Article  CAS  PubMed  Google Scholar 

  19. Kan M, Wu X, Wang F, McKeehan WL. Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem. 1999;274:15947–52.

    Article  CAS  PubMed  Google Scholar 

  20. Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, et al. Genomic aberrations in the fgfr pathway: Opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25:552–63.

    Article  CAS  PubMed  Google Scholar 

  21. Parker BC, Engels M, Annala M, Zhang W. Emergence of fgfr family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol. 2014;232:4–15.

    Article  CAS  PubMed  Google Scholar 

  22. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable fgfr gene fusions in diverse cancers. Cancer Discov. 2013;3:636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beau-Faller M, Gaub MP, Schneider A, Guerin E, Meyer N, Ducrocq X, et al. Allelic imbalance at loci containing fgfr, fgf, c-met and hgf candidate genes in non-small cell lung cancer sub-types, implication for progression. Eur J Cancer. 2003;39:2538–47.

    Article  CAS  PubMed  Google Scholar 

  24. Ren M, Hong M, Liu G, Wang H, Patel V, Biddinger P, et al. Novel fgfr inhibitor ponatinib suppresses the growth of non-small cell lung cancer cells overexpressing fgfr1. Oncol Rep. 2013;29:2181–90.

    CAS  PubMed  Google Scholar 

  25. Volm M, Koomagi R, Mattern J, Stammler G. Prognostic value of basic fibroblast growth factor and its receptor (fgfr-1) in patients with non-small cell lung carcinomas. Eur J Cancer. 1997;33:691–3.

    Article  CAS  PubMed  Google Scholar 

  26. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type ii alveolar epithelial cells. Int J Cancer. 1976;17:62–70.

    Article  CAS  PubMed  Google Scholar 

  27. Kang M, Choi S, Jeong SJ, Lee SA, Kwak TK, Kim H, et al. Cross-talk between tgfbeta1 and egfr signalling pathways induces tm4sf5 expression and epithelial-mesenchymal transition. Biochem J. 2012;443:691–700.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, et al. M2 macrophages promote beta-cell proliferation by up-regulation of smad7. Proc Natl Acad Sci U S A. 2014;111:E1211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Xia W, Baker D, Zhou J, Cha HC, Voorhees JJ, et al. Receptor-type protein tyrosine phosphatase beta (rptp-beta) directly dephosphorylates and regulates hepatocyte growth factor receptor (hgfr/met) function. J Biol Chem. 2011;286:15980–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Nature Science Foundation of China (81001036) and Shanghai Municipal Commission of Health and Family Planning (2010Y066).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deping Zhao or Zhifei Xu.

Additional information

Deping Zhao and Yi Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Lu, Y., Yang, C. et al. Activation of FGF receptor signaling promotes invasion of non-small-cell lung cancer. Tumor Biol. 36, 3637–3642 (2015). https://doi.org/10.1007/s13277-014-3001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-3001-y

Keywords

Navigation