Skip to main content

Advertisement

Log in

Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P < 0.05). MeCP2 silencing could also induce significant apoptosis compared to non-silenced cells (P < 0.05); 107 expression changed genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55 %. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miao JL, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumor Biol. 2013;34(4):2093–8.

    Article  CAS  Google Scholar 

  2. Stiller CA. International patterns of cancer incidence in adolescents. Cancer Treat Rev. 2007;33(7):631–45.

    Article  PubMed  Google Scholar 

  3. Futamura N, Nishida Y, Urakawa H, Kozawa E, Ikuta K, Hamada S, et al. EMMPRIN co-expressed with matrix metalloproteinases predicts poor prognosis in patients with osteosarcoma. Tumor Biol. 2014;35(6):5159–65.

    Article  CAS  Google Scholar 

  4. Ando K, Heymann MF, Stresing V, Mori K, Redini F, Heymann D. Current therapeutic strategies and novel approaches in osteosarcoma. Cancer (Basel). 2013;5(2):591–616.

    Article  CAS  Google Scholar 

  5. Jones PA. DNA methylation and cancer. Oncogene. 2002;21(35):5358–60.

    Article  CAS  PubMed  Google Scholar 

  6. Siedlecki P, Zielenkiewicz P. Mammalian DNA methyltransferases. Acta Biochim Pol. 2006;53(2):245–56.

    CAS  PubMed  Google Scholar 

  7. Silva TD, Vidigal VM, Felipe AV, de Lima JM, Neto RA, Saad SS, et al. DNA methylation as an epigenetic biomarker in colorectal cancer. Oncol Lett. 2013;6(6):1687–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97(20):1498–506.

    Article  CAS  PubMed  Google Scholar 

  9. Yaqinuddin A, Abbas F, Nagvi SZ, Bashir MU, Qazi R, Qureshi SA. Silencing of MBD1 and MeCP2 in prostate-cancer-derived PC3 cells produces differential gene expression profiles and cellular phenotype. Biosci Rep. 2008;28(6):319–26.

    Article  CAS  PubMed  Google Scholar 

  10. Yi JM, Dhir M, Guzzetta AA, Lacobuzio-Donahue CA, Heo K, Yang KM, et al. DNA methylation biomarker candidates for early detection of colon cancer. Tumor Biol. 2012;33(2):363–72.

    Article  CAS  Google Scholar 

  11. Keller S, Angrisano T, Florio E, Pero R, Decaussin-Petrucci M, Troncone G, et al. DNA methylation state of the galectin-3 gene represents a potential new marker of thyroid malignancy. Oncol Lett. 2013;6(1):86–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K. L1 retrotransposition in neurons is modulated by MeCP2. Nature. 2010;468(7322):443–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schena M, Shalon D, Davis RW. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Zhang L, Zhang G, Li S, Duan J, Cheng J, et al. Osteosarcoma metastasis: prospective role of ezrin. Tumor Biol. 2014;35(6):5055–9.

    Article  CAS  Google Scholar 

  15. Chen TW, Li HP, Lee C, Gan RC, Huang PJ, Wu TH, et al. ChIP seek, a web-based analysis tool for ChIP data. BMC Genomics. 2014;15(1):539.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu K, Liu XN, Zhang HB, An N, Wang Y, Zhang ZC, et al. Replication-defective HSV-1 effectively targets trigeminal ganglion and inhibits viral pathopoiesis by mediating interferon gamma expression in SH-SY5Y cells. J Mol Neurosci. 2014;53(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326–30.

    Article  CAS  PubMed  Google Scholar 

  18. Squillaro T, Alessio N, Cipollaro M, Renieri A, Giordano A, Galderisi U. Partial silencing of methyl cytosine protein binding 2 (MECP2) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB J. 2010;24(5):1593–603.

    Article  CAS  PubMed  Google Scholar 

  19. Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer. 2013;16(1):23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Do SI, Ko E, Kang SY, Lee JE, Nam SJ, Cho EY, et al. Aberrant DNA methylation of integrin alpha-4 inhuman breast cancer. Tumor Biol. 2014;35(7):7079–84.

    Article  CAS  Google Scholar 

  21. Grigoras D, Pirtea L, Ceausu RA. Endothelial progenitor cells contribute to the development of ovarian carcinoma tumor blood vessels. Oncol Lett. 2014;7(5):1511–4.

    PubMed  PubMed Central  Google Scholar 

  22. Zhao LY, Zhang J, Guo B, Yang J, Han J, Zhao XG, et al. MeCP2 promotes cell proliferation by activating ERK1/2 and inhibiting p38 activity in human hepatocellular carcinoma HEPG2 cells. Cell Mol Biol Suppl. 2013;59:OL1876–81.

    CAS  Google Scholar 

  23. Bernard D, Gil J, Dumont P, Rizzo S, Monte D, Quatannens B, et al. The methyl-CpG-binding protein MeCP2 is required for prostate cancer cell growth. Oncogene. 2006;25(9):1358–66.

    Article  CAS  PubMed  Google Scholar 

  24. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3–34.

    CAS  PubMed  Google Scholar 

  25. Lewinski A, Marcinkowska M, Brzezianska E, Jeziorowska A, Wloch J, Brzezinski J. Expression of insulin-like growth factor I gene and of genes for IGF-binding proteins 1, 2, 3, 4 (IGFBP-1-IGFBP-4) in non-neoplastic human thyroid cells and in certain human thyroid cancers. Effect of exogenous IGF-I on this expression. Endocr Res. 2004;30(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  26. Ryan AJ, Napoletano S, Fitzpatrick PA, Currid CA, O’Sullivan NC, Harmey JH. Expression of a protease-resistant insulin-like growth factor-binding protein-4 inhibits tumor growth in a murine model of breast cancer. Br J Cancer. 2009;101(2):278–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alami Y, Castronovo V, Belotti D, Flagiello D, Clausse N. HOXC5 and HOXC8 expression are selectively turned on in human cervical cancer cells compared to normal keratinocytes. Biochem Biophys Res Commun. 1999;257(3):738–45.

    Article  CAS  PubMed  Google Scholar 

  28. Waltregny D, Alami Y, Clausse N, de Leval J, Castronovo V. Overexpression of the homeobox gene HOXC8 in human prostate cancer correlations with loss of tumor differentiation. Prostate. 2002;50(3):162–9.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Chao F, Huang B, Liu D, Kim J, Huang S. HOXC8 promotes breast tumorigenesis by transcriptionally facilitating cadherin-11 expression. Oncotarget. 2014;5(9):2596–607.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu J, Ohuchida K, Nakata K, Mizumoto K, Cui L, Fujita H, et al. LIM only 4 is overexpressed in late stage pancreas cancer. Mol Cancer. 2008;7(1):93.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Comelison R, et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 2002;62(5):1256–60.

    CAS  PubMed  Google Scholar 

  32. Cui L, Xie R, Dang S, Zhang Q, Mao S, Chen J, et al. NOV promoted the growth and migration of pancreatic cancer cells. Tumor Biol. 2014;35(4):3195–201.

    Article  CAS  Google Scholar 

  33. Tomizawa M, Yu L, Wada A, Tamaoki T, Kadomatsu. A promoter region of the midkine gene that is frequently expressed in human hepatocellular carcinoma can activate a suicide gene as effectively as the alpha-fetoprotein promoter. Br J Cancer. 2003;89(6):1086–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erguven M, Bilir A, Yazihan N, Korkmaz S, Aktas E, Ovalioglu C, et al. Imatinib mesylate decreases the cytotoxic effect of roscovitine on human glioblastoma cells in vitro and the role of midkine. Oncol Lett. 2012;3(1):200–8.

    CAS  PubMed  Google Scholar 

  35. Hao H, Maeda Y, Fukazawa T, Yamatsuji T, Takaoka M, Bao XH, et al. Inhibition of the growth factor MDK/midkine by a novel molecule compound to treat non-small cell lung cancer. PLoS One. 2013;8(8):e71093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou ZQ, Zao WH, Xie JJ, Lin J, Shen ZY, Zhang QY, et al. Expression and prognostic significance of THBS1, cyr61 and CTGF in esophageal squamous cell carcinoma. BMC Cancer. 2009;9(1):291.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 2009;69(3):775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia XQ, Cheng HQ, Li H, Zhu Y, Li YH, Feng ZQ, et al. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo. Chin Med J (Engl). 2011;124(22):3794–9.

    CAS  Google Scholar 

  39. Wang L, Chen Z, Wang Y, Chang D, Su L, Guo Y, et al. WWTR1 promotes cell proliferation and inhibits apoptosis through cyclin A and CTGF regulation in non-small cell lung cancer. Tumor Biol. 2014;35(1):463–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (81001198 and 81372864).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Nan Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, G., Li, Y., lv, Y. et al. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells. Tumor Biol. 36, 3009–3015 (2015). https://doi.org/10.1007/s13277-014-2935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2935-4

Keywords

Navigation