Skip to main content

Advertisement

Log in

Investigation of the role of 8-OHdG and oxidative stress in papillary thyroid carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of this study was to determine levels of serum 8-hydroxy-2′-deoxyguanosine (8-OHdG) as an indicator of oxidant-induced DNA damage and oxidant status in patients with papillary thyroid carcinoma before and after surgery. This study included 25 patients with papillary thyroid carcinoma and age-matched 27 healthy controls. Total antioxidant status (TAS), total oxidant status (TOS), lipid hydroperoxide (LOOH), and 8-OHdG levels were measured. 8-OHdG levels were significantly higher in the preoperative papillary thyroid carcinoma (PTC) group compared with the healthy control group (p < 0.001) and were significantly lower after operation in patients with papillary thyroid carcinoma (p = 0.004). Oxidative stress index (OSI) levels were significantly higher in both preoperative and postoperative PTC patients compared with the healthy control group (p < 0.001 and p < 0.001, respectively). TOS levels were higher in the preoperative and postoperative PTC groups compared to the healthy control group (p < 0.001 and p < 0.001, respectively). TAS levels was lower in the preoperative PTC groups compared to the healthy control group (p = 0.011). Serum LOOH levels were higher in both preoperative and postoperative PTC groups compared to the healthy control group (p < 0.001 and p < 0.001, respectively). Correlation analysis yielded that serum 8-OHdG levels were positively correlated with OSİ and LOOH levels in patients with PTC before surgery (r = 0.668, p < 0.001; r = 0.446, p = 0.025, respectively) and had a negative correlation with TAS levels (r = −0.616, p = 0.001). We have shown severe oxidative DNA damage and impaired antioxidant status in papillary thyroid carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Sprague BL, Warren AS, Trentham-Dietz A. Thyroid cancer incidence and socioeconomic indicators of health care access. Cancer Cases Control. 2008;19:585–93.

    Article  Google Scholar 

  3. Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med. 1993;328(8):553–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chan AC, Lang BH, Wong KP. The pros and cons of routine central compartment neck dissection for clinically nodal negative (cN0) papillary thyroid cancer. Gland Surg. 2013;2(4):186–95.

    PubMed  PubMed Central  Google Scholar 

  5. Maier J, van Steeg H, van Oostrom C, Karger S, Paschke R, Krohn K. Deoxyribonucleic acid damage and spontaneous mutagenesis in the thyroid gland of rats and mice. Endocrinology. 2006;147(7):3391–7.

    Article  CAS  PubMed  Google Scholar 

  6. Beckman RA, Loeb LA. Genetic instability in cancer: theory and experiment. Semin Cancer Biol. 2005;15(6):423–35.

    Article  CAS  PubMed  Google Scholar 

  7. Paschke R. Molecular pathogenesis of nodular goiter. Langenbecks Arch Surg. 2011;396(8):1127–36.

    Article  PubMed  Google Scholar 

  8. Minuz P, Fava C, Cominacini L. Oxidative stress, antioxidants, and vascular damage. Br J Clin Pharmacol. 2006;61(6):774–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1–2):37–56.

    Article  CAS  PubMed  Google Scholar 

  10. Chow E, Thirlwell C, Macrae F, Lipton L. Colorectal cancer and inherited mutations in base-excision repair. Lancet Oncol. 2004;5(10):600–6.

    Article  CAS  PubMed  Google Scholar 

  11. Himmetoglu S, Dincer Y, Ersoy YE, Bayraktar B, Celik V, Akcay T. DNA oxidation and antioxidant status in breast cancer. J Investig Med. 2009;57(6):720–3.

    Article  PubMed  Google Scholar 

  12. Arsova-Sarafinovska Z, Eken A, Matevska N, Erdem O, Sayal A, Savaser A, et al. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer. Clin Biochem. 2009;42(12):1228–35.

    Article  CAS  PubMed  Google Scholar 

  13. Gönenç A, Hacışevki A, Aslan S, Torun M, Şimşek B. Increased oxidative DNA damage and impaired antioxidant defense system in patients with gastrointestinal cancer. Eur J Intern Med. 2012;23(4):350–4.

    Article  PubMed  Google Scholar 

  14. Bulut M, Selek S, Bez Y, Karababa IF, Kaya MC, Gunes M, et al. Reduced PON1 enzymatic activity and increased lipid hydroperoxide levels that point out oxidative stress in generalized anxiety disorder. J Affect Disord. 2013;150(3):829–33.

    Article  CAS  PubMed  Google Scholar 

  15. Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39(8):1529–42.

    CAS  PubMed  Google Scholar 

  16. Sherman SI, Brierley JD, Sperling M, Ain KB, Bigos ST, Cooper DS, et al. Prospective multicenter study of thyroiscarcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer. 1998;83(5):1012–21.

    Article  CAS  PubMed  Google Scholar 

  17. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–11.

    Article  CAS  PubMed  Google Scholar 

  18. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112–9.

    Article  CAS  PubMed  Google Scholar 

  19. Arab K, Steghens JP. Serum lipid hydroperoxides measurement by an automated xylenol orange method. Anal Biochem. 2004;325:158–63.

    Article  CAS  PubMed  Google Scholar 

  20. Aycicek A, Erel O, Kocyigit A. Increased oxidative stress in infants exposed to passive smoking. Eur J Pediatr. 2005;164:775–8.

    Article  CAS  PubMed  Google Scholar 

  21. Nourooz-Zadeh J. Ferrous ion oxidation in presence of xylenol orange for detection of lipid hydroperoxides in plasma. Methods Enzymol. 1999;300:58–62.

    Article  CAS  PubMed  Google Scholar 

  22. Ceylan MF, Guney E, Alisik M, Ergin M, Dinc GS, Goker Z, et al. Lipid peroxidation markers in children with anxiety disorders and their diagnostic implications. Redox Rep. 2014;19(2):92–6.

    Article  CAS  PubMed  Google Scholar 

  23. Pande D, Negi R, Karki K, Khanna S, Khanna RS, Khanna HD. Oxidative damage markers as possible discriminatory biomarkers in breast carcinoma. Transl Res. 2012;160(6):411–8. 

  24. Diakowska D, Lewandowski A, Kopeć W, Diakowski W, Chrzanowska T. Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Hepatogastroenterology. 2007;54(78):1701–4.

    CAS  PubMed  Google Scholar 

  25. Pande D, Negi R, Karki K, Khanna S, Khanna RS, Khanna HD. Oxidative damage markers as possible discriminatory biomarkers in breast carcinoma. Transl Res. 2012;160(6):411–8.

    Article  CAS  PubMed  Google Scholar 

  26. Płachetka A, Adamek B, Strzelczyk JK, Krakowczyk Ł, Migula P, Nowak P, et al. 8-Hydroxy-2′-deoxyguanosine in colorectal adenocarcinoma—is it a result of oxidative stress? Med Sci Monit. 2013;21(19):690–5.

    Google Scholar 

  27. Kosova F, Temeltaş G, Arı Z, Lekili M. Possible relations between oxidative damage and apoptosis in benign prostate hyperplasia and prostate cancer patients. Tumour Biol. 2014;35(5):4295–9.

    Article  CAS  PubMed  Google Scholar 

  28. Young O, Crotty T, O’Connell R, O’Sullivan J, Curran AJ. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia. Head Neck. 2010;32(6):750–6.

    PubMed  Google Scholar 

  29. Sharma A, Rajappa M, Saxena A, Sharma M. Antioxidant status in advanced cervical cancer patients undergoing neoadjuvant chemoradiation. Br J Biomed Sci. 2007;64(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  30. Karki K, Pande D, Negi R, Khanna S, Khanna RS, Khanna HD. Expression of serum toll-like receptor 9 and oxidative damage markers in benign and malignant breast diseases. DNA Cell Biol. 2014;33(9):630–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzan Tabur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabur, S., Aksoy, Ş.N., Korkmaz, H. et al. Investigation of the role of 8-OHdG and oxidative stress in papillary thyroid carcinoma. Tumor Biol. 36, 2667–2674 (2015). https://doi.org/10.1007/s13277-014-2889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2889-6

Keywords

Navigation