Skip to main content
Log in

MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase

  • Research Article
  • Published:
Tumor Biology

Abstract

Colorectal cancer (CRC, also known as colon cancer, rectal cancer, or bowel cancer) is the second leading cause of cancer mortality in the Western world. MicroRNAs (miRNAs) are a class of small (18–25 nucleotides long) noncoding RNAs with important posttranscriptional regulatory functions. miRNAs play important roles in various physiological and pathological processes including carcinogenesis in various solid cancers including CRC. In order to investigate the roles that miRNAs played in CRC, the expression of human miRNAs (in 20 normal adjacent tissue samples and 20 colon cancer samples) was examined in this study. miR-455, miR-484, and miR-101 were significantly downregulated in colon cancer samples. And overexpression of miR-455 significantly inhibited the proliferation and the invasion of SW480, but had no effect on apoptosis. PCR and Western blot showed that overexpression of miR-455 decreased protein expression of RAF proto-oncogene serine/threonine-protein kinase (RAF1) but had no effect on mRNA level. Luciferase assay indicated that miR-455 regulated RAF1 expression directly. Moreover, overexpression of RAF1 partially reversed the inhibitory effect of miR-455 on the growth and the invasion of SW480. The data indicated that miR-455 regulates the proliferation and invasion of colorectal cancer cells, at least in part, by downregulating RAF1, a direct target of miR-455. Collectively, our study demonstrated that miR-455-RAF1 may represent a new potential therapeutic target for colorectal carcinoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J Clin. 2001;51:15–36.

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001;2:533–43.

    Article  CAS  PubMed  Google Scholar 

  3. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  4. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, et al. Diagnostic and prognostic microRNAs in stage ii colon cancer. Cancer Res. 2008;68:6416–24.

    Article  CAS  PubMed  Google Scholar 

  5. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  6. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer J Int du Cancer. 2010;127:2893–917.

    Article  CAS  Google Scholar 

  7. Reid JF, Sokolova V, Zoni E, Lampis A, Pizzamiglio S, Bertan C, et al. Mirna profiling in colorectal cancer highlights mir-1 involvement in met-dependent proliferation. Mol Cancer Res MCR. 2012;10:504–15.

    Article  CAS  PubMed  Google Scholar 

  8. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends cancer epidemiology, biomarkers & prevention. Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2010;19:1893–907.

    Google Scholar 

  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  10. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58:1284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J. 2012;18:244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michael MZ SMOC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res: MCR. 2003;1:882–91.

    PubMed  Google Scholar 

  13. Luo X, Burwinkel B, Tao S, Brenner H. MicroRNA signatures: novel biomarker for colorectal cancer. Cancer Epidemiol Biomarkers Prev : Publ Am Assoc Cancer Res Cosponsored Am Soc of Prev Oncol. 2011;20:1272–86.

    Article  CAS  Google Scholar 

  14. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T, et al. The colorectal microRNAome. Proc Natl Acad Sci U S A. 2006;103:3687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA : J Am Med Assoc. 2008;299:425–36.

    CAS  Google Scholar 

  16. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mattick JS, Makunin IV: Small regulatory RNAs in mammals. Human molecular genetics 2005;14 Spec No 1:R121-132.

  18. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14:2690–5.

    Article  CAS  Google Scholar 

  19. Nagadia R, Pandit P, Coman WB, Cooper-White J, Punyadeera C. MiRNAs in head and neck cancer revisited. Cell Oncol. 2013;36:1–7.

    Article  CAS  Google Scholar 

  20. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  21. Iorio MV, Croce CM. MicroRNAs in cancer: Small molecules with a huge impact. J Clin Oncol : Off J Am Soc Clin Oncol. 2009;27:5848–56.

    Article  CAS  Google Scholar 

  22. Wang YW, Shi DB, Chen X, Gao C, Gao P. Clinicopathological significance of microRNA-214 in gastric cancer and its effect on cell biological behaviour. PLoS ONE. 2014;9:e91307.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Li W, Zhang JG, Li HY, Li YM: Downregulation of tumor suppressor menin by mir-421 promotes proliferation and migration of neuroblastoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014

  24. Ma Y, She XG, Ming YZ, Wan QQ: Mir-24 promotes the proliferation and invasion of hcc cells by targeting sox7. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014

  25. Wu JH, Yao YL, Gu T, Wang ZY, Pu XY, Sun WW, et al. Mir-421 regulates apoptosis of bgc-823 gastric cancer cells by targeting caspase-3. Asian Pac J Cancer Prev : APJCP. 2014;15:5463–8.

    Article  PubMed  Google Scholar 

  26. Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, et al. Mir-195, mir-455-3p and mir-10a (*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett. 2010;296:241–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hu Z, Shen WJ, Kraemer FB, Azhar S. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class b type i in steroidogenic cells. Mol Cell Biol. 2012;32:5035–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, et al. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol Rep. 2012;28:77–84.

    PubMed  Google Scholar 

  29. Swingler TE, Wheeler G, Carmont V, Elliott HR, Barter MJ, Abu-Elmagd M, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 2012;64:1909–19.

    Article  CAS  PubMed  Google Scholar 

  30. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, et al. Raf-1 activates map kinase-kinase. Nature. 1992;358:417–21.

    Article  CAS  PubMed  Google Scholar 

  31. Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, Shokat KM, et al. A raf-induced allosteric transition of ksr stimulates phosphorylation of mek. Nature. 2011;472:366–9.

    Article  CAS  PubMed  Google Scholar 

  32. Li P, Wood K, Mamon H, Haser W, Roberts T. Raf-1: a kinase currently without a cause but not lacking in effects. Cell. 1991;64:479–82.

    Article  CAS  PubMed  Google Scholar 

  33. Xu ZH, Hang JB, Hu JA, Gao BL. Raf1-mek1-erk/akt axis may confer nsclc cell lines resistance to erlotinib. Int J Clin Exp Pathol. 2013;6:1493–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM, et al. Mir-16 inhibits cell proliferation by targeting igf1r and the raf1-mek1/2-erk1/2 pathway in osteosarcoma. FEBS Lett. 2013;587:1366–72.

    Article  CAS  PubMed  Google Scholar 

  35. Albers C, Illert AL, Miething C, Leischner H, Thiede M, Peschel C, et al. An RNAi-based system for loss-of-function analysis identifies raf1 as a crucial mediator of bcr-abl-driven leukemogenesis. Blood. 2011;118:2200–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi T, Aoki Y, Niihori T, Cave H, Verloes A, Okamoto N, et al. Molecular and clinical analysis of raf1 in noonan syndrome and related disorders: Dephosphorylation of serine 259 as the essential mechanism for mutant activation. Hum Mutat. 2010;31:284–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Guangzhou Vipotion Biotechnology Co., Ltd. for the assistance in the vector construction of luciferase reporter assay.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, J., Wang, S., Han, D. et al. MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by targeting RAF proto-oncogene serine/threonine-protein kinase. Tumor Biol. 36, 1313–1321 (2015). https://doi.org/10.1007/s13277-014-2766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2766-3

Keywords

Navigation