Skip to main content

Advertisement

Log in

Macrophage colony-stimulating factor and cancer: a review

  • Review
  • Published:
Tumor Biology

Abstract

Tumor growth is influenced by a wide variety of external and internal factors. One of the most important mediators of tumor development is our immune system. The nonstop surveillance of the immune system was originally expected to clear the transformed cells from the body and guard against the development of tumor. But contradictory evidences are reported to show the involvement of immune system in supporting the growth and spread of tumor. Tumor infiltrating immune cells, in addition to harboring immunosuppressive activities, also promote angiogenesis and metastasis of tumor. Many growth factors and cytokines are involved in shaping this complex immune microenvironment of the tumor. Macrophage colony-stimulating factor (MCSF) is one such growth factor which is overexpressed in many tumors. In this review, we summarize the basic biology of MCSF, its role in cancer and discuss the involvement of tumor-associated macrophages (TAMs) in tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44(6):2259–65.

    CAS  PubMed  Google Scholar 

  2. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. doi:10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, et al. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer Educ. 2013;4(1):84–95. doi:10.7150/jca.5482.

    Article  Google Scholar 

  4. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70(14):5728–39. doi:10.1158/0008-5472.can-09-4672.

    Article  CAS  PubMed  Google Scholar 

  5. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18(5):349–55. doi:10.1016/j.semcancer.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  6. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37. doi:10.1038/nrc1782.

    Article  PubMed  Google Scholar 

  7. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. doi:10.1016/j.cell.2010.03.014.

    Article  CAS  PubMed  Google Scholar 

  8. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. doi:10.1016/j.cell.2006.01.007.

    Article  CAS  PubMed  Google Scholar 

  9. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8. doi:10.1038/nrc1256.

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231–7. doi:10.1016/j.coi.2010.01.009.

    Article  CAS  PubMed  Google Scholar 

  11. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    Article  CAS  PubMed  Google Scholar 

  12. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717–27. doi:10.1016/j.ejca.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  13. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75. doi:10.3389/fphys.2014.00075.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, et al. Biology and action of colony–stimulating factor-1. Mol Reprod Dev. 1997;46(1):4–10. doi:10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  15. Stanley ER, Chen DM, Lin HS. Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature. 1978;274(5667):168–70.

    Article  CAS  PubMed  Google Scholar 

  16. Yeung YG, Stanley ER. Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transduction. Mol Cell BiolMCP. 2003;2(11):1143–55. doi:10.1074/mcp.R300009-MCP200.

    CAS  Google Scholar 

  17. Hamilton JA. CSF-1 signal transduction. J Leukoc Biol. 1997;62(2):145–55.

    CAS  PubMed  Google Scholar 

  18. Bartelmez SH, Bradley TR, Bertoncello I, Mochizuki DY, Tushinski RJ, Stanley ER, et al. Interleukin 1 plus interleukin 3 plus colony-stimulating factor 1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp Hematol. 1989;17(3):240–5.

    CAS  PubMed  Google Scholar 

  19. Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, et al. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol. 2008;8(10):1354–76. doi:10.1016/j.intimp.2008.04.016.

    Article  CAS  PubMed  Google Scholar 

  20. Shadle PJ, Aldwin L, Nitecki DE, Koths K. Human macrophage colony-stimulating factor heterogeneity results from alternative mRNA splicing, differential glycosylation, and proteolytic processing. J Cell Biochem. 1989;40(1):91–107. doi:10.1002/jcb.240400110.

    Article  CAS  PubMed  Google Scholar 

  21. Cerretti DP, Wignall J, Anderson D, Tushinski RJ, Gallis BM, Stya M, et al. Human macrophage-colony stimulating factor: alternative RNA and protein processing from a single gene. Mol Immunol. 1988;25(8):761–70.

    Article  CAS  PubMed  Google Scholar 

  22. Wang ZE, Myles GM, Brandt CS, Lioubin MN, Rohrschneider L. Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. Mol Cell Biol. 1993;13(9):5348–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Stein J, Borzillo GV, Rettenmier CW. Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood. 1990;76(7):1308–14.

    CAS  PubMed  Google Scholar 

  24. Roussel MF. Signal transduction by the macrophage-colony-stimulating factor receptor (CSF-1R). J Cell Sci Suppl. 1994;18:105–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bourette RP, Rohrschneider LR. Early events in M-CSF receptor signaling. Growth Factors. 2000;17(3):155–66.

    Article  CAS  PubMed  Google Scholar 

  26. van der Geer P, Hunter T. Mutation of Tyr697, a GRB2-binding site, and Tyr721, a PI 3-kinase binding site, abrogates signal transduction by the murine CSF-1 receptor expressed in Rat-2 fibroblasts. EMBO J. 1993;12(13):5161–72.

    PubMed Central  PubMed  Google Scholar 

  27. Reedijk M, Liu X, van der Geer P, Letwin K, Waterfield MD, Hunter T, et al. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3′-kinase SH2 domains: a model for SH2-mediated receptor-target interactions. EMBO J. 1992;11(4):1365–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Bourette RP, Myles GM, Choi JL, Rohrschneider LR. Sequential activation of phoshatidylinositol 3-kinase and phospholipase C-gamma2 by the M-CSF receptor is necessary for differentiation signaling. EMBO J. 1997;16(19):5880–93. doi:10.1093/emboj/16.19.5880.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Novak U, Nice E, Hamilton JA, Paradiso L. Requirement for Y706 of the murine (or Y708 of the human) CSF-1 receptor for STAT1 activation in response to CSF-1. Oncogene. 1996;13(12):2607–13.

    CAS  PubMed  Google Scholar 

  30. Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994;120(6):1357–72.

    CAS  PubMed  Google Scholar 

  31. Evans R, Kamdar SJ, Fuller JA, Krupke DM. The potential role of the macrophage colony-stimulating factor, CSF-1, in inflammatory responses: characterization of macrophage cytokine gene expression. J Leukoc Biol. 1995;58(1):99–107.

    CAS  PubMed  Google Scholar 

  32. Warren MK, Ralph P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J Immunol. 1986;137(7):2281–5.

    CAS  PubMed  Google Scholar 

  33. Sweet MJ, Hume DA. CSF-1 as a regulator of macrophage activation and immune responses. Arch Immunol Ther Exp. 2003;51(3):169–77.

    CAS  Google Scholar 

  34. Ryan GR, Dai XM, Dominguez MG, Tong W, Chuan F, Chisholm O, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood. 2001;98(1):74–84.

    Article  CAS  PubMed  Google Scholar 

  35. Wiktor-Jedrzejczak W, Bartocci A, Ferrante Jr AW, Ahmed-Ansari A, Sell KW, Pollard JW, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87(12):4828–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC, Pollard JW, et al. CSF-1 deficiency in mice results in abnormal brain development. Development. 1996;122(9):2661–72.

    CAS  PubMed  Google Scholar 

  37. Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A. 1994;91(20):9312–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol. 1991;148(1):273–83.

    Article  CAS  PubMed  Google Scholar 

  39. Behnes CL, Bremmer F, Hemmerlein B, Strauss A, Strobel P, Radzun HJ. Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma. Virchows Arch: Int J Pathol. 2014;464(2):191–6. doi:10.1007/s00428-013-1523-0.

    Article  CAS  Google Scholar 

  40. Kacinski BM, Scata KA, Carter D, Yee LD, Sapi E, King BL, et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene. 1991;6(6):941–52.

    CAS  PubMed  Google Scholar 

  41. Ramakrishnan S, Xu FJ, Brandt SJ, Niedel JE, Bast Jr RC, Brown EL. Constitutive production of macrophage colony-stimulating factor by human ovarian and breast cancer cell lines. J Clin Invest. 1989;83(3):921–6. doi:10.1172/jci113977.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kacinski BM, Carter D, Mittal K, Yee LD, Scata KA, Donofrio L, et al. Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol. 1990;137(1):135–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kacinski BM. CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med. 1995;27(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  44. Mroczko B, Groblewska M, Wereszczynska-Siemiatkowska U, Okulczyk B, Kedra B, Laszewicz W. Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin Chim Acta; Int J Clin Chem. 2007;380(1–2):208–12.

    Article  CAS  Google Scholar 

  45. Groblewska M, Mroczko B, Wereszczynska-Siemiatkowska U, Mysliwiec P, Kedra B, Szmitkowski M. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin Chem Lab Med: CCLM / FESCC. 2007;45(1):30–4. doi:10.1515/CCLM.2007.025.

    Article  CAS  Google Scholar 

  46. McDermott RS, Deneux L, Mosseri V, Vedrenne J, Clough K, Fourquet A, et al. Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur Cytokine Netw. 2002;13(1):121–7.

    CAS  PubMed  Google Scholar 

  47. Chambers SK, Kacinski BM, Ivins CM, Carcangiu ML. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clini Cancer Res: Off J Am Assoc Cancer Res. 1997;3(6):999–1007.

    CAS  Google Scholar 

  48. Richards DM, Hettinger J, Feuerer M. Monocytes and macrophages in cancer: development and functions. Cancer Microenviron : Off J Int Cancer Microenviron Soc. 2013;6(2):179–91. doi:10.1007/s12307-012-0123-x.

    Article  CAS  Google Scholar 

  49. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12. doi:10.1158/0008-5472.CAN-05-4005.

    Article  CAS  PubMed  Google Scholar 

  50. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Experiment Med. 2001;193(6):727–40.

    Article  CAS  Google Scholar 

  51. Coffelt SB, Hughes R, Lewis CE. Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta. 2009;1796(1):11–8. doi:10.1016/j.bbcan.2009.02.004.

    CAS  PubMed  Google Scholar 

  52. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104(8):2224–34. doi:10.1182/blood-2004-03-1109.

    Article  CAS  PubMed  Google Scholar 

  53. Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005;167(3):627–35. doi:10.1016/S0002-9440(10)62038-X.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D. Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol. 1998;5(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  55. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 2002;161(3):947–56. doi:10.1016/S0002-9440(10)64255-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25(3):315–22. doi:10.1007/s10555-006-9001-7.

    Article  PubMed  Google Scholar 

  57. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 2002;62(24):7203–6.

    CAS  PubMed  Google Scholar 

  58. Soker S, Kaefer M, Johnson M, Klagsbrun M, Atala A, Freeman MR. Vascular endothelial growth factor-mediated autocrine stimulation of prostate tumor cells coincides with progression to a malignant phenotype. Am J Pathol. 2001;159(2):651–9. doi:10.1016/S0002-9440(10)61736-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Plate KH, Breier G, Weich HA, Mennel HD, Risau W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer J Int du Cancer. 1994;59(4):520–9.

    Article  CAS  Google Scholar 

  60. Boocock CA, Charnock-Jones DS, Sharkey AM, McLaren J, Barker PJ, Wright KA, et al. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995;87(7):506–16.

    Article  CAS  PubMed  Google Scholar 

  61. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995;55(18):3964–8.

    CAS  PubMed  Google Scholar 

  62. Yoshiji H, Kuriyama S, Hicklin DJ, Huber J, Yoshii J, Miyamoto Y. KDR/Flk-1 is a major regulator of vascular endothelial growth factor-induced tumor development and angiogenesis in murine hepatocellular carcinoma cells. Hepatol (Baltim, Md). 1999;30(5):1179–86. doi:10.1002/hep.510300509.

    Article  CAS  Google Scholar 

  63. Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol. 2003;171(5):2637–43.

    Article  CAS  PubMed  Google Scholar 

  64. Curry JM, Eubank TD, Roberts RD, Wang Y, Pore N, Maity A, et al. M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo. PLoS ONE. 2008;3(10):e3405. doi:10.1371/journal.pone.0003405.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Chambers SK, Wang Y, Gertz RE, Kacinski BM. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 1995;55(7):1578–85.

    CAS  PubMed  Google Scholar 

  66. Kawakami Y, Nagai N, Ohama K, Zeki K, Yoshida Y, Kuroda E, et al. Macrophage-colony stimulating factor inhibits the growth of human ovarian cancer cells in vitro. Eur J Cancer. 2000;36(15):1991–7.

    Article  CAS  PubMed  Google Scholar 

  67. Jadus MR, Irwin MC, Irwin MR, Horansky RD, Sekhon S, Pepper KA, et al. Macrophages can recognize and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood. 1996;87(12):5232–41.

    CAS  PubMed  Google Scholar 

  68. Jadus MR, Chen Y, Boldaji MT, Delgado C, Sanchez R, Douglass T, et al. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins. Cancer Gene Ther. 2003;10(5):411–20. doi:10.1038/sj.cgt.7700583.

    Article  CAS  PubMed  Google Scholar 

  69. Jadus MR, Williams CC, Avina MD, Ly M, Kim S, Liu Y, et al. Macrophages kill T9 glioma tumor cells bearing the membrane isoform of macrophage colony stimulating factor through a phagocytosis-dependent pathway. J Immunol. 1998;160(1):361–8.

    CAS  PubMed  Google Scholar 

  70. Hoa NT, Zhang JG, Delgado CL, Myers MP, Callahan LL, Vandeusen G. Human monocytes kill M-CSF-expressing glioma cells by BK channel activation. Laboratory investigation. J Tech Methods Pathol. 2007;87(2):115–29. doi:10.1038/labinvest.3700506.

    Article  CAS  Google Scholar 

  71. Chockalingam S, Ghosh SS. Amelioration of cancer stem cells in macrophage colony stimulating factor-expressing U87MG-human glioblastoma upon 5-fluorouracil therapy. PLoS ONE. 2013;8(12):e83877. doi:10.1371/journal.pone.0083877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28(3–4):335–44. doi:10.1007/s10555-009-9194-7.

    Article  CAS  PubMed  Google Scholar 

  73. Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011;307(1):26–36. doi:10.1016/j.canlet.2011.03.012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69(14):5820–8. doi:10.1158/0008-5472.can-08-2819.

    Article  CAS  PubMed  Google Scholar 

  75. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228(7):1404–12. doi:10.1002/jcp.24260.

    Article  CAS  PubMed  Google Scholar 

  76. Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol. 2013;13(4):595–601. doi:10.1016/j.coph.2013.05.017.

    Article  CAS  PubMed  Google Scholar 

  77. Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol, Immunother: CII. 2013;62(12):1757–68. doi:10.1007/s00262-013-1487-6.

    Article  CAS  PubMed  Google Scholar 

  78. Rego SL, Helms RS, Dreau D. Tumor necrosis factor-alpha-converting enzyme activities and tumor-associated macrophages in breast cancer. Immunol Res. 2014;58(1):87–100. doi:10.1007/s12026-013-8434-7.

    Article  CAS  PubMed  Google Scholar 

  79. Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett. 2013;332(1):3–10. doi:10.1016/j.canlet.2013.01.024.

    Article  CAS  PubMed  Google Scholar 

  80. Jarnicki AG, Lysaght J, Todryk S, Mills KH. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol. 2006;177(2):896–904.

    Article  CAS  PubMed  Google Scholar 

  81. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37. doi:10.1084/jem.20082173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, et al. Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A. 2004;101(49):17174–9. doi:10.1073/pnas.0406351101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7. doi:10.1073/pnas.192461099.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104(9):3360–5. doi:10.1073/pnas.0611533104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96. doi:10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  86. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008;205(6):1261–8. doi:10.1084/jem.20080108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65(8):3437–46. doi:10.1158/0008-5472.CAN-04-4262.

    CAS  PubMed  Google Scholar 

  88. Watkins SK, Egilmez NK, Suttles J, Stout RD. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol. 2007;178(3):1357–62.

    Article  CAS  PubMed  Google Scholar 

  89. Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86(5):1105–9. doi:10.1189/jlb.0209073.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was supported by Department of Biotechnology (no. BT/01/NE/PS/08) and Department of Electronics and Information Technology, Government of India (no. 5 (9)/2012-n (vol. II)). Authors acknowledge assistance from the Centre for Nanotechnology, IIT Guwahati.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chockalingam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chockalingam, S., Ghosh, S.S. Macrophage colony-stimulating factor and cancer: a review. Tumor Biol. 35, 10635–10644 (2014). https://doi.org/10.1007/s13277-014-2627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2627-0

Keywords

Navigation