Skip to main content

Advertisement

Log in

PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, inhibits anaplastic thyroid carcinoma cell proliferation and migration

  • Research Article
  • Published:
Tumor Biology

Abstract

The tyrosine and phosphoinositide kinases play crucial roles in the regulation of many cancer cell processes including cell survival and cell motility. Anaplastic thyroid carcinoma (ATC) is a rare and deadly type of thyroid cancer, and so far, there are no effective therapeutic compounds for ATC. Herein, we investigate the anticancer activities of PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, in ATC therapy. We found that PP121 is effective at suppressing cell viability, inducing cell apoptosis, and inhibiting cell migration and invasion. The potential anticancer mechanism for PP121 might be its inhibitory effects on phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in ATC cells. Furthermore, PP121 is effective at suppressing ATC tumor growth in vivo. In summary, our studies suggest that PP121 might be a promising therapeutic compound for ATC treatment, which might shed new light on ATC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Are C, Shaha AR. Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol. 2006;13(4):453–64.

    Article  PubMed  Google Scholar 

  2. Sun C, Xu X, Wang X, et al. Thymic carcinoma with tumor thrombus protruding into the superior vena cava and the right atrium. Thoracic Cancer. 2013;4(3):333–4.

  3. Zhang J, Wang H, Tian W, et al. Brown tumor of the rib as a first presentation of primary hyperparathyroidism: report of three cases and literature review. Thoracic Cancer. 2013;4(4):474–8.

  4. Wiseman SM, Masoudi H, Niblock P, et al. Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann Surg Oncol. 2007;14(2):719–29.

    Article  PubMed  Google Scholar 

  5. Bruni P, Boccia A, Baldassarre G, et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells is mediated by p27kip1. Oncogene. 2000;19(28):3146–55.

    Article  CAS  PubMed  Google Scholar 

  6. Weng LP, Gimm O, Kum JB, et al. Transient ectopic expression of PTEN in thyroid cancer cell lines induces cell cycle arrest and cell type-dependent cell death. Hum Mol Genet. 2001;10(3):251–8.

    Article  CAS  PubMed  Google Scholar 

  7. Dahia PL, Marsh DJ, Zheng Z, et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 1997;57(21):4710–3.

    CAS  PubMed  Google Scholar 

  8. Gimm O, Perren A, Weng LP, et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue and benign and malignant epithelial thyroid tumors. Am J Pathol. 2000;156(5):1693–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ringel MD, Hayre N, Saito J, et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 2001;61(16):6105–11.

    CAS  PubMed  Google Scholar 

  10. García-Rostán G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65(22):10199–207.

    Article  PubMed  Google Scholar 

  11. Ha HT, Lee JS, Urba S, et al. A phase II study of imatinib in patients with advanced anaplastic thyroid cancer. Thyroid. 2010;20(9):975–80.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Wang P, Dykstra M, et al. Platelet-derived growth factor receptor-α promotes lymphatic metastases in papillary thyroid cancer. J Pathol. 2012;228(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  13. Kim MJ, Kim SK, Park HJ, et al. PDGFRA promoter polymorphisms are associated with the risk of papillary thyroid cancer. Mol Med Rep. 2012;5(5):1267–70.

    CAS  PubMed  Google Scholar 

  14. Malkomes P, Oppermann E, Bechstein WO, et al. Significantly high expression of platelet-derived growth factor (PDGF) in benign nodules of the thyroid: relevance in the development of goitre recurrence? Langenbecks Arch Surg. 2011;396(8):1165–72.

    Article  PubMed  Google Scholar 

  15. Chen KT, Lin JD, Liou MJ, et al. An aberrant autocrine activation of the platelet-derived growth factor alpha-receptor in follicular and papillary thyroid carcinoma cell lines. Cancer Lett. 2006;231(2):192–205.

    Article  CAS  PubMed  Google Scholar 

  16. Apsel B, Blair JA, Gonzalez B, et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol. 2008;4(11):691–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.

    Article  CAS  PubMed  Google Scholar 

  18. Cantley LC. The phosphoinositide 3-kinase pathway. Science (New York, NY). 2002;296(5573):1655–7.

    Article  CAS  Google Scholar 

  19. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9(6):667–76.

    Article  CAS  PubMed  Google Scholar 

  20. Oka N et al. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 2005;65(17):7546–53.

    CAS  PubMed  Google Scholar 

  21. Moses SA et al. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT. Cancer Res. 2009;69(12):5073–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kundra V, Escobedo JA, Kazlauskas A, et al. Regulation of chemotaxis by the platelet-derived growth factor receptor-beta. Nature. 1994;367(6462):474–6.

    Article  CAS  PubMed  Google Scholar 

  23. Hirai H, Sootome H, Nakatsuru Y, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956–67.

    Article  CAS  PubMed  Google Scholar 

  24. Engelman JA et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  25. Sergina NV et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445:437–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang-yuan Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Hy., Guo, Hy., Si, Xw. et al. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, inhibits anaplastic thyroid carcinoma cell proliferation and migration. Tumor Biol. 35, 8659–8664 (2014). https://doi.org/10.1007/s13277-014-2118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2118-3

Keywords

Navigation