Skip to main content

Advertisement

Log in

Inhibition of macrophage polarization prohibits growth of human osteosarcoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Osteosarcoma is the most malignant bone tumor characterized by high local aggressiveness and poor therapeutic outcome. Tumor-associated macrophages (TAM) have been shown to participate in the development and progress of many types of cancer cells. However, whether TAM may play a role in the pathogenesis of osteosarcoma is largely unknown. In a mouse model of human osteosarcoma implantation, we showed that the recruited macrophages at the site of the implanted tumor were polarized to an M2 subtype (same as TAM) during the development and growth of the osteosarcoma. In a loss-of-function experiment, we deleted these TAM with a specific macrophage-eliminating liposome, which resulted in decreased tumor growth. Moreover, when the epidermal growth factor receptor (EGFR) in the implanted cancer cells was inhibited by shRNA, the tumor failed to grow in response to the recruited macrophages. Taken together, for the first time, we show that the growth of an osteosarcoma is EGFR signaling-dependent and TAM-mediated. Our data suggest that TAM and EGFR may be good targets for treating human osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol. 2013;25:398–406.

    Article  CAS  PubMed  Google Scholar 

  2. Tsuchiya H, Tomita K, Mori Y, Asada N, Morinaga T, Kitano S, et al. Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Res. 1998;18:657–66.

    CAS  PubMed  Google Scholar 

  3. Buddingh EP, Kuijjer ML, Duim RA, Burger H, Agelopoulos K, Myklebost O, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res. 2011;17:2110–9.

    Article  CAS  PubMed  Google Scholar 

  4. Endo-Munoz L, Evdokiou A, Saunders NA. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim Biophys Acta. 1826;2012:434–42.

    Google Scholar 

  5. Ponten J, Saksela E. Two established in vitro cell lines from human mesenchymal tumours. Int J Cancer. 1967;2:434–47.

    Article  CAS  PubMed  Google Scholar 

  6. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  7. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  PubMed  Google Scholar 

  8. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118:3522–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.

    Article  CAS  PubMed  Google Scholar 

  11. Coffelt SB, Hughes R, Lewis CE. Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta. 2009;1796:11–8.

    CAS  PubMed  Google Scholar 

  12. Lamagna C, Aurrand-Lions M, Imhof BA. Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol. 2006;80:705–13.

    Article  CAS  PubMed  Google Scholar 

  13. van Rooijen N, Bakker J, Sanders A. Transient suppression of macrophage functions by liposome-encapsulated drugs. Trends Biotechnol. 1997;15:178–85.

    Article  PubMed  Google Scholar 

  14. van Rooijen N, van Nieuwmegen R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study. Cell Tissue Res. 1984;238:355–8.

    Article  PubMed  Google Scholar 

  15. Plosker GL, Goa KL. Clodronate. A review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs. 1994;47:945–82.

    Article  CAS  PubMed  Google Scholar 

  16. Kanis JA, McCloskey EV. Clodronate. Cancer. 1997;80:1691–5.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, et al. M2 macrophages promote beta-cell proliferation by up-regulation of smad7. Proc Natl Acad Sci U S A. 2014;111:E1211–20.

    Article  CAS  PubMed  Google Scholar 

  18. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Klambt C. Egf receptor signalling: the importance of presentation. Curr Biol. 2000;10:R388–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by internal funding from Liaoning Medical University.

Conflicts of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Zhang, X., Wu, Y. et al. Inhibition of macrophage polarization prohibits growth of human osteosarcoma. Tumor Biol. 35, 7611–7616 (2014). https://doi.org/10.1007/s13277-014-2005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2005-y

Keywords

Navigation