Skip to main content
Log in

Nicotine upregulates microRNA-21 and promotes TGF-β-dependent epithelial-mesenchymal transition of esophageal cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

A consistent positive association between cigarette smoking and the human esophageal cancer has been confirmed all over the world. However, details in the association need to be more focused on and be identified. Recently, aberrantly expressed microRNAs (miRNAs) have been shown to be promising biomarkers for understanding the tumorigenesis of a wide array of human cancers, including the esophageal cancer, and the deregulation on the epithelial to mesenchymal transition (EMT) by miRNAs is involved in the tumorigenesis. In present study, we were going to identify the role of nicotine-induced miR-21 in the EMT of esophageal cells. We found that there was an overexpression of miR-21 in esophageal specimens, having an association with cigarette smoking, and the upregulation of miR-21 was also induced by nicotine in esophageal carcinoma cell line, EC9706. Moreover, the upregulated miR-21 by nicotine promoted EMT transforming growth factor beta (TGF-β) dependently. Thus, the present study reveals a novel oncogenic role of nicotine in human esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer J Int Cancer. 2010;127:2893–917.

    Article  CAS  Google Scholar 

  2. Botterweck AA, Schouten LJ, Volovics A, Dorant E, van Den Brandt PA. Trends in incidence of adenocarcinoma of the oesophagus and gastric cardia in ten European countries. Int J Epidemiol. 2000;29:645–54.

    Article  CAS  PubMed  Google Scholar 

  3. Fernandes ML, Seow A, Chan YH, Ho KY. Opposing trends in incidence of esophageal squamous cell carcinoma and adenocarcinoma in a multi-ethnic Asian country. Am J Gastroenterol. 2006;101:1430–6.

    Article  PubMed  Google Scholar 

  4. Wei WQ, Yang J, Zhang SW, Chen WQ, Qiao YL. Analysis of the esophageal cancer mortality in 2004–2005 and its trends during last 30 years in China. Zhonghua Yu Fang Yi Xue Za Zhi Chin J Prev Med. 2010;44:398–402.

    Google Scholar 

  5. Lee YC, Cohet C, Yang YC, Stayner L, Hashibe M, Straif K. Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer. Int J Epidemiol. 2009;38:1497–511.

    Article  PubMed  Google Scholar 

  6. Terry PD, Rohan TE. Cigarette smoking and the risk of breast cancer in women: a review of the literature. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Am Soc Prev Oncol. 2002;11:953–71.

    Google Scholar 

  7. Dische S, Saunders MI, Lee M, Bennett MH. Cigarette smoking and cancer of bladder and lung. Br Med J. 1976;2:1174–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tai SY, Wu IC, Wu DC, Su HJ, Huang JL, Tsai HJ, et al. Cigarette smoking and alcohol drinking and esophageal cancer risk in Taiwanese women. World J Gastroenterol WJG. 2010;16:1518–21.

    Article  PubMed  Google Scholar 

  9. Oze I, Matsuo K, Ito H, Wakai K, Nagata C, Mizoue T, et al. Research group for the D. evaluation of cancer prevention strategies in J. cigarette smoking and esophageal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 2012;42:63–73.

    Article  PubMed  Google Scholar 

  10. Kimm H, Kim S, Jee SH. The independent effects of cigarette smoking, alcohol consumption, and serum aspartate aminotransferase on the alanine aminotransferase ratio in Korean men for the risk for esophageal cancer. Yonsei Med J. 2010;51:310–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ishiguro S, Sasazuki S, Inoue M, Kurahashi N, Iwasaki M, Tsugane S, et al. Effect of alcohol consumption, cigarette smoking and flushing response on esophageal cancer risk: a population-based cohort study (JPHC study). Cancer Lett. 2009;275:240–6.

    Article  CAS  PubMed  Google Scholar 

  12. Gao YT, McLaughlin JK, Blot WJ, Ji BT, Benichou J, Dai Q, et al. Risk factors for esophageal cancer in Shanghai, China. I. Role of cigarette smoking and alcohol drinking. Int J Cancer J Int Cancer. 1994;58:192–6.

    Article  CAS  Google Scholar 

  13. Abrams JA, Lee PC, Port JL, Altorki NK, Neugut AI. Cigarette smoking and risk of lung metastasis from esophageal cancer. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Am Soc Prev Oncol. 2008;17:2707–13.

    Article  Google Scholar 

  14. Au WW, Su D, Yuan J. Cigarette smoking in China: public health, science, and policy. Rev Environ Health. 2012;27:43–9.

    Article  PubMed  Google Scholar 

  15. Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res MCR. 2014;12:14–23.

    Article  CAS  PubMed  Google Scholar 

  16. Brown KC, Perry HE, Lau JK, Jones DV, Pulliam JF, Thornhill BA, et al. Nicotine induces the up-regulation of the α7-nicotinic receptor (α7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA protein pathway. J Biol Chem. 2013;288:33049–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cucina A, Dinicola S, Coluccia P, Proietti S, D'Anselmi F, Pasqualato A, et al. Nicotine stimulates proliferation and inhibits apoptosis in colon cancer cell lines through activation of survival pathways. J Surg Res. 2012;178:233–41.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Wadei MH, Al-Wadei HA, Schuller HM. Effects of chronic nicotine on the autocrine regulation of pancreatic cancer cells and pancreatic duct epithelial cells by stimulatory and inhibitory neurotransmitters. Carcinogenesis. 2012;33:1745–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jensen K, Afroze S, Munshi MK, Guerrier M, Glaser SS. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl Gastrointest Cancer. 2012;1:81–7.

    PubMed Central  PubMed  Google Scholar 

  20. Zou W, Zou Y, Zhao Z, Li B, Ran P. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2013;304:L199–209.

    Article  CAS  PubMed  Google Scholar 

  21. Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer J Int Cancer. 2009;124:36–45.

    Article  CAS  Google Scholar 

  22. Liu Y, Liu BA. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin. World J Gastroenterol WJG. 2011;17:2674–80.

    Article  CAS  PubMed  Google Scholar 

  23. Shin VY, Jin HC, Ng EK, Sung JJ, Chu KM, Cho CH. Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Lett. 2010;292:237–45.

    Article  CAS  PubMed  Google Scholar 

  24. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.

    Article  CAS  PubMed  Google Scholar 

  27. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7: RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    Article  CAS  PubMed  Google Scholar 

  28. Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol. 2007;26:293–300.

    Article  CAS  PubMed  Google Scholar 

  29. Yu SL, Chen HY, Yang PC, Chen JJ. Unique microRNA signature and clinical outcome of cancers. DNA Cell Biol. 2007;26:283–92.

    Article  CAS  PubMed  Google Scholar 

  30. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15:1010–2.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang B, Zhang Z, Xia S, Xing C, Ci X, Li X, et al. KLF5 activates microRNA 200 transcription to maintain epithelial characteristics and prevent induced epithelial-mesenchymal transition in epithelial cells. Mol Cell Biol. 2013;33:4919–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ding X, Park SI, McCauley LK, Wang CY. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013;288:10241–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yu F, Jiao Y, Zhu Y, Wang Y, Zhu J, Cui X, et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem. 2012;287:465–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4:122ra122.

    Article  Google Scholar 

  36. Katsuno Y, Lamouille S, Derynck R. TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76–84.

    Article  CAS  PubMed  Google Scholar 

  37. Fuxe J, Karlsson MC. TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol. 2012;22:455–61.

    Article  CAS  PubMed  Google Scholar 

  38. Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, et al. miR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood. 2013;121:2875–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Di Bernardini E, Campagnolo P, Margariti A, Zampetaki A, Karamariti E, Hu Y, et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways. J Biol Chem. 2014;289:3383–93.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Foroni C, Broggini M, Generali D, Damia G. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev. 2012;38:689–97.

    Article  CAS  PubMed  Google Scholar 

  41. Wang T, Xuan X, Pian L, Gao P, Xu H, Zheng Y, et al. Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial-mesenchymal transition through Snail. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2013;35(2):1193–201.

    Article  Google Scholar 

  42. Li Y, Fu L, Li JB, Qin Y, Zeng TT, Zhou J, Zeng ZL, Chen J, Cao TT, Ban X, Qian C, Cai Z, Xie D, Huang P, Guan XY. Increased expression of EIF5A2, via hypoxia or gene amplification, contributes to metastasis and angiogenesis of esophageal squamous cell carcinoma. Gastroenterology 2014.

  43. Min S, Xiaoyan X, Fanghui P, Yamei W, Xiaoli Y, Feng W. The glioma-associated oncogene homolog 1 promotes epithelial–mesenchymal transition in human esophageal squamous cell cancer by inhibiting E-cadherin via Snail. Cancer Gene Ther. 2013;20:379–85.

    Article  CAS  PubMed  Google Scholar 

  44. Natsuizaka M, Kinugasa H, Kagawa S, Whelan KA, Naganuma S, Subramanian H, et al. IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment. Am J Cancer Res. 2014;4:29–41.

    PubMed Central  PubMed  Google Scholar 

  45. Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N, et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci. 2012;103:1058–64.

    Article  CAS  PubMed  Google Scholar 

  46. Han M, Liu M, Wang Y, Mo Z, Bi X, Liu Z, et al. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem. 2012;363:427–36.

    Article  CAS  PubMed  Google Scholar 

  47. Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, et al. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One. 2012;7:e39520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pan X, Wang ZX, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2010;10:1224–32.

    Article  CAS  PubMed  Google Scholar 

  49. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  PubMed  Google Scholar 

  50. Lou Y, Yang X, Wang F, Cui Z, Huang Y. MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. Int J Mol Med. 2010;26:819–27.

    Article  CAS  PubMed  Google Scholar 

  51. Connolly EC, Van Doorslaer K, Rogler LE, Rogler CE. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res MCR. 2010;8:691–700.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18:350–9.

    Article  CAS  PubMed  Google Scholar 

  53. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 2010;38:e98.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant of outstanding Henan province science and technology innovation talent project (114200510007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Pan, T., Zhong, X. et al. Nicotine upregulates microRNA-21 and promotes TGF-β-dependent epithelial-mesenchymal transition of esophageal cancer cells. Tumor Biol. 35, 7063–7072 (2014). https://doi.org/10.1007/s13277-014-1968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1968-z

Keywords

Navigation