Skip to main content
Log in

MicroRNA218 inhibits glioma migration and invasion via inhibiting glioma-associated oncogene homolog 1 expression at N terminus

  • Research Article
  • Published:
Tumor Biology

Abstract

Glioma is characterized by high invasion, migration and proliferation abilities. However, the molecular mechanism that triggers the development and recurrence of this tumor is also elusive. This study aims to investigate the biological function and molecular mechanism of microRNA218 in glioma. Human glioma samples were obtained and employed to investigate the correlation between microRNA218 and glioma pathological grading. Glioma cell viability was detected by the cell-counting kit-8 (CCK-8) cell counting assay. Transwell assay and wound-healing assay were employed to examine the migration and invasion of the glioma cells. The mRNA transcription and protein expression of glioma-associated oncogene homolog 1 (GLI1) were analyzed by quantitative RT-PCR and Western blot analysis, respectively. Southwestern blot assay was utilized to explore the possible interaction site of GLI1 and microRNA218. The results indicated that microRNA218 is significantly down-regulated in glioma samples and negatively correlated with the pathological grading. The cell viability was significantly decreased, and migration and invasion were significantly inhibited in microRNA218 treated cells, compared with un-treated cells. GLI1 was discovered acting as a functional downstream target of microRNA218, by which microRNA218 inhibited glioma cell migration and invasion. Southwestern blot result showed that microRNA218 targeted directly the N terminus of GLI1 molecular, and repressed the GLI1 expression in U87MG cells. In conclusion, microRNA218 could reduce the invasion and migration, and inhibit proliferation of glioma cells by suppressing the expression of GLI1 protein at the interacting with the N terminus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An LW, Liu YJ, Wu AH, Guan YF. MicroRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PLoS One. 2013;8(7):e69478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tu YY, Gao XC, Li G. MicroRNA-218 inhibits glioma invasion, migration, proliferation and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res. 2013. doi:10.1158/0008-5472.CAN-13-0358.

    Google Scholar 

  3. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479–89.

    CAS  PubMed  Google Scholar 

  4. Louis DN, Ohgaki H, Wiestler QD, Gavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto S, et al. Exosome can prevent RNase from degrading microRNA in fece. J Gastrointest Oncol. 2011;2(4):215–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Li YY, Wang Y, Yu L, Sun CY, Cheng DG, Yu SZ, et al. miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cancer Lett. 2013;339(2):260–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lu S, Mukkada VA, Mangray S, Cleveland K, Shillingford N, Schorl C, et al. MicroRNA profiling in mucosal biopsies of eosinophilic esophagitis patients pre and post-treatment with steroids with relationship with mRNA targets. PLoS One. 2012;7(7):e40676.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNA are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Li QJ, Zhou L, Yang F, Wang GX, Zheng H, Wang DS, et al. MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumor Biol. 2012;33(5):1455–65.

    Article  CAS  Google Scholar 

  10. Sana J, Hajduch M, Michalek J, Vyzula R, Slaby O. MicroRNA and glioblastoma: roles in core signaling pathways and potential clinical implications. J Cell Mol Med. 2011;15(8):1636–44.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3(5):279–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4(1):199–227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Skalsky RL, Cullen BR. Reduced expression of brain-enriched microRNA in glioblastomas permits targeted regulation of a cell death gene. PLoS One. 2011;6(9):e24248.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Song L, Huang Q, Chen K, Liu L, Lin C, Dai T, et al. miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-beta. Biochem Biophys Res Commun. 2010;402(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  15. Li CH, To KF, Tong JHM, Xiao ZG, Xia T, Lai PBS, et al. Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductal adenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology. 2013;144(5):1086–97.

    Article  CAS  PubMed  Google Scholar 

  16. Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting Caveolin-2 involved in focal adhesion pathway. J Urol. 2013;190(3):1059–68.

    Article  CAS  PubMed  Google Scholar 

  17. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610.

    Article  CAS  PubMed  Google Scholar 

  18. Lees CW, Zacharias WJ, Tremelling M, Noble CL, Nimmo ER, Tenesa A, et al. Analysis of germline GLI1 variation implicates hedgehog signaling in the regulation of intestinal inflammatory pathways. PLoS Med. 2008;5(12):e239.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang Y, Dutta A, Abounader R. The role of microRNAs in glioma initiation and progression. Front Biosci (Landmark Ed). 2012;17(1):700–12.

    Article  CAS  Google Scholar 

  21. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stuhler K, Meyer HE, et al. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 2010;20(3):539–50.

    Article  CAS  PubMed  Google Scholar 

  22. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67(6):2456–68.

    Article  CAS  PubMed  Google Scholar 

  23. Setty M, Helmy K, Khan AA, Silber J, Arvey A, Neezen F, et al. Inferring transcription and microRNA-mediated regulatory programs in gliomastoma. Mol Syst Biol. 2012;8(1):605.

    PubMed Central  PubMed  Google Scholar 

  24. Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors: mediators of oncogenic Hedgehog signaling. Eur J Cancer. 2006;42(4):437–45.

    Article  CAS  PubMed  Google Scholar 

  25. Nisson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG, et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci U S A. 2000;97(7):3438–43.

    Article  Google Scholar 

  26. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruizi AA. HEDGEHOG-GLI1 signaling regulates human growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17(2):165–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ruizi Altaba A, Mas C, Stecca B. The GLI code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol. 2007;17(9):438–47.

    Article  CAS  Google Scholar 

  28. Agarwal NK, Qu C, Kunkalla K, Liu Y, Vega F. Transcriptional regulation of serine/threonine protein kinase (AKT) genes by glioma-associated oncogene homolog 1. J Biol Chem. 2013;288(21):15390–401.

    Article  CAS  PubMed  Google Scholar 

  29. Shimakawa T, Tostar U, Lauth M, Palaniswamy R, Kasper M, Toftgard R, et al. Novel human Glioma-associated oncogene 1 (GLI1) splice variants reveal distinct mechanism in the terminal teransduction of the hedgehog signal. J Biol Chem. 2008;283(21):14345–54.

    Article  Google Scholar 

  30. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics mouse models, and stem cells. Cell. 2012;149(1):36–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Peng.

Additional information

B. Peng and D. Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Li, D., Qin, M. et al. MicroRNA218 inhibits glioma migration and invasion via inhibiting glioma-associated oncogene homolog 1 expression at N terminus. Tumor Biol. 35, 3831–3837 (2014). https://doi.org/10.1007/s13277-013-1507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1507-3

Key words

Navigation