Skip to main content
Log in

Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

A sulfated polysaccharide (EI-SP), extracted from Enteromorpha intestinalis that is a kind of algae, is found to have anticancer activity. This study was designed to investigate the anti-tumor effect of EI-SP on human hepatoma HepG2 cell line and its possible mechanisms. An MTT assay showed that EI-SP could specifically inhibit the growth of human hepatoma HepG2 cells in a dose-dependent manner. Analysis by flow cytometry indicated that the apoptosis of tumor cells increased after treatment with EI-SP in range of 100–400 μg/ml. Furthermore, Western blot analysis showed that EI-SP treatment led to decreased protein expression of Bcl-2 and an increase in Bax, cleaved caspase-3, cleaved caspase-9 and cleaved poly(ADP-ribose) polymerase (PARP). Moreover, it was found that EI-SP caused a loss of mitochondrial membrane potential (Δψ m) and the release of cytochrome c to the cytosol. Collectively, our results showed that the EI-SP induces apoptosis in HepG2 cells involving a caspases-mediated mitochondrial signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DeLong EF. Marine microbial diversity: the tip of the iceberg. Trends Biotechnol. 1997;15:203–7.

    Article  CAS  PubMed  Google Scholar 

  2. Rasmussen RS, Morrissey MT. Marine biotechnology for production of food ingredients: advances in food and nutrition research. Adv Food Nutr Res. 2007;52:237–92.

    Article  CAS  PubMed  Google Scholar 

  3. Barrow C, Shahidi F. Marine nutraceuticals and functional foods. New York: CRC Press; 2008.

    Google Scholar 

  4. Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs. 2010;8:1080–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wijesekara I, Yoon NY, Kim SK. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors. 2010;36:408–14.

    Article  CAS  PubMed  Google Scholar 

  6. Ren D. Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol. 1997;15:9–14.

    Article  Google Scholar 

  7. Mao W, Li H, Li Y, Zhang H, Qi X, Sun H, et al. Chemical characteristics and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta). Int J Biol Macromol. 2009;44:70–4.

    Article  CAS  PubMed  Google Scholar 

  8. Ponce NM, Pujol CA, Damonte EB, Flores ML, Stortz CA. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res. 2003;338:153–65.

    Article  CAS  PubMed  Google Scholar 

  9. Rupérez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulphated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem. 2002;50:840–5.

    Article  PubMed  Google Scholar 

  10. Synytsya A, Kim WJ, Kim SM, Pohl R, Synytsya A, Kvasnička F, et al. Structure and antitumor activity of fucoidan isolated from sporophyll of Korean seaweed Undaria pinnatifida. Carbohydr Polym. 2010;81:41–8.

    Article  CAS  Google Scholar 

  11. Na YS, Kim WJ, Kim SM, Park JK, Lee SM, Kim SO, et al. Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens. Int Immunopharmacol. 2010;10:364–70.

    Article  CAS  PubMed  Google Scholar 

  12. Morales MA, Valdez MC, Dominguez SC, Acosta BG, Gil FP. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. J Food Compos Anal. 2005;18:79–88.

    Article  Google Scholar 

  13. Mamatha BS, Namitha KK, Amudha S, Smitha J, Ravishankar GA. Studies on use of Entetomorpha in snack food. Food Chem. 2007;101:1707–13.

    Article  CAS  Google Scholar 

  14. Xu DL, Huang XC, Yang WG, Wu D. Analysis of nutrition of enteromorpha proliferation. J Zhejiang Oceation University. 2003;22:318–20.

    Google Scholar 

  15. Zhou HP, Jiang XT, Wang SR, Chen QH. Effect of polysaccharide from Enteromorpha prolifera on Lipemia, SOD activity, and LPO content. J Chinese Biochemical. 1995;11:161–5.

    CAS  Google Scholar 

  16. Xu DL, Huang XC, Ou CR, Xue CH, Yang WG, Wang HH. In vitro study on polysaccharides in Enteromorpha with non-specific immunity. Food Sci. 2005;26:232–5.

    CAS  Google Scholar 

  17. Jiao L, Li X, Li T, Jiang P, Zhang L, Wu M, et al. Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis. Int Immunopharmacol. 2009;9:324–9.

    Article  CAS  PubMed  Google Scholar 

  18. Jiao LL, Jiang P, Zhang LP, Wu MJ. Antitumor and immunomodulating activity of polysaccharides from Enteromorpha intestinalis. Biotechnol Bioprocess Eng. 2010;15:421–8.

    Article  CAS  Google Scholar 

  19. Staub AM. Removal of protein-Sevag method. Methods Carbohydr Chem. 1965;5:5–6.

    CAS  Google Scholar 

  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.

    Article  CAS  Google Scholar 

  21. Filisetti-Cozzi TM, Carpita NC. Measurement of uronic acids without interference from neutral sugars. Anal Biochem. 1991;197:157–62.

    Article  CAS  PubMed  Google Scholar 

  22. Dodgson KS, Price RGA. Note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J. 1962;84:106–10.

    CAS  PubMed  Google Scholar 

  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  24. Sun Y, Wang S, Li T, Li X, Jiao L, Zhang L. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz) Teng. Bioresour Technol. 2008;99:900–4.

    Article  CAS  PubMed  Google Scholar 

  25. Peng YR, Li YB, Liu XD, Zhang JF, Duan JA. Antitumor activity of C-21 steroidal glycosides from Cynanchum auriculatum Royle ex Wight. Phytomedicine. 2008;15:1016–20.

    Article  CAS  PubMed  Google Scholar 

  26. Tian Z, Yang M, Huang F, Li K, Si J, Shi L, et al. Cytotoxicity of three cycloartane triterpenoids from Cimicifuga dahurica. Cancer Lett. 2005;226:65–75.

    Article  CAS  PubMed  Google Scholar 

  27. Yan F, Wang M, Li J, Cheng H, Su J, Wang X, et al. Gambogenic acid induced mitochondrial-dependent apoptosis and referred to Phospho-Erk1/2 and Phospho-p38 MAPK in human hepatoma HepG2 cells. Environ Toxicol Pharmacol. 2012;33:181–90.

    Article  PubMed  Google Scholar 

  28. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132–6.

    Article  CAS  PubMed  Google Scholar 

  29. Gschwind M, Huber G. Apoptotic cell death induced by β-amyloid 1–42 peptide is cell type dependent. J Neurochem. 1995;65:292–300.

    Article  CAS  PubMed  Google Scholar 

  30. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med. 2001;7:314–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann KC, Green DR. How cells die: apoptosis pathways. J Allergy Clin Immunol. 2001;108:S99–S103.

    Article  CAS  PubMed  Google Scholar 

  32. Csokay B, Prajda N, Weber G, Olah E. Molecular mechanisms in the antiproliferative action of quercetin. Life Sci. 1997;60(24):2157–63.

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–57.

    Article  CAS  PubMed  Google Scholar 

  34. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  CAS  PubMed  Google Scholar 

  35. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    Article  CAS  PubMed  Google Scholar 

  36. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem. 1999;274:20049–52.

    Article  CAS  PubMed  Google Scholar 

  37. Vinatier D, Dufour P, Subtil D. Apoptosis: a programmed cell death involved in ovarian and uterine physiology. Eur J Obstet Gynecol Reprod Biol. 1996;67:85–102.

    Article  CAS  PubMed  Google Scholar 

  38. Das GC, Holiday D, Gallardo R, Haas C. Taxol-induced cell cycle arrest and apoptosis: dose–response relationship in lung cancer cells of different wildtype p53 status and under isogenic condition. Cancer Lett. 2001;165:147–53.

    Article  CAS  PubMed  Google Scholar 

  39. Debatin K. Activation of apoptosis pathways by anticancer treatment. Toxicol Lett. 2000;112–113:41–8.

    Article  PubMed  Google Scholar 

  40. da Silva CP, de Oliveira CR, da Conceição M, de Lima P. Apoptosis as a mechanism of cell death induced by different chemotherapeutic drugs in human leukemic T-lymphocytes. Biochem Pharmacol. 1996;51:1331–40.

    Article  PubMed  Google Scholar 

  41. Preston TJ, Abadi A, Wilson L, Singh G. Mitochondrial contributions to cancer cell physiology: potential for drug development. Adv Drug Deliv Rev. 2001;49:45–61.

    Article  CAS  PubMed  Google Scholar 

  42. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factors. Nature. 1999;397:441–6.

    Article  CAS  PubMed  Google Scholar 

  43. Hengartner MO. The biochemistry of apoptosis. Nature. 2006;407:770–6.

    Article  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Chen, Y., Wang, J. et al. Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway. Tumor Biol. 35, 1641–1647 (2014). https://doi.org/10.1007/s13277-013-1226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1226-9

Keywords

Navigation