Skip to main content

Advertisement

Log in

Targeted induction of apoptosis in glioblastoma multiforme cells by an MRP3-specific TRAIL fusion protein in vitro

  • Research Article
  • Published:
Tumor Biology

Abstract

Single-chain Fv fragments (scFvs) consist of the variable heavy-chain (VH) and variable light-chain (VL) domains, which are the smallest immunoglobulin fragments containing the whole antigen-binding site. Human soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) proves to acquire a potent pro-apoptotic activity only after selective binding to a predefined tumor cell surface antigen and has no off-target effects towards normal cells. Glioblastoma multiforme (GBM) is the most frequent and aggressive type of brain tumor and overexpresses human multidrug resistance protein 3 (MRP3). In this study, we designed a novel fusion protein, termed scFvM58-sTRAIL, in which the MRP3-specific scFv antibody M58 was genetically fused to the N-terminus of human soluble TRAIL (sTRAIL). The recombinant scFvM58-sTRAIL fusion protein, expressed in Escherichia coli, was purified by chromatography and tested for cytotoxicity. scFvM58-sTRAIL showed a significant apoptosis-inducing activity towards MRP3-positive GBM cells in vitro. The pro-apoptotic activity of scFvM58-sTRAIL towards GBM cells was strongly inhibited in the presence of the parental scFvM58 antibody, suggesting that cytotoxic activity is MRP3-restricted. In a control experiment with MRP3-negative Jurkat cells, scFvM58-sTRAIL did not induce apparent apoptosis. In addition, through target antigen-restricted binding, scFvM58-sTRAIL was capable of activating not only TRAIL-R1 but also TRAIL-R2. In conclusion, our results suggest that fusion protein scFvM58-sTRAIL with specificity for MRP3 is a highly selective therapeutic agent and may provide an alternative therapy for human GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma multiforme

MRP3:

Multidrug resistance protein 3

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

scFv:

Single-chain Fv antibody fragment

References

  1. Fuller GN. The WHO classification of tumours of the central nervous system, 4th edition. Archives of pathology & laboratory medicine. 2008;132:906.

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The N Engl J Med. 2005;352:987–96.

    Article  CAS  Google Scholar 

  3. Kreitman RJ. Immunotoxins for targeted cancer therapy. The AAPS journal. 2006;8:E532–51.

    Article  CAS  PubMed  Google Scholar 

  4. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol. 2002;13:603–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kuan CT, Reist CJ, Foulon CF, Lorimer IA, Archer G, et al. 125I-labeled anti-epidermal growth factor receptor-vIII single-chain Fv exhibits specific and high-level targeting of glioma xenografts. Clin Cancer Res: An official journal of the American Association for Cancer Research. 1999;5:1539–49.

    CAS  Google Scholar 

  6. de Bruyn M, Rybczynska AA, Wei Y, Schwenkert M, Fey GH, et al. Melanoma-associated chondroitin sulfate proteoglycan (MCSP)-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo. Mol Cancer. 2010;9:301.

    Article  PubMed Central  PubMed  Google Scholar 

  7. de Bruyn M, Bremer E, Helfrich W. Antibody-based fusion proteins to target death receptors in cancer. Cancer Lett. 2013;332:175–83.

    Article  PubMed  Google Scholar 

  8. Frank S, Kohler U, Schackert G, Schackert HK. Expression of TRAIL and its receptors in human brain tumors. Biochem Biophys Res Commun. 1999;257:454–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kuijlen JM, Bremer E, Mooij JJ, den Dunnen WF, Helfrich W. Review: on TRAIL for malignant glioma therapy? Neuropathol Appl Neurobiol. 2010;36:168–82.

    Article  CAS  PubMed  Google Scholar 

  10. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271:12687–90.

    Article  CAS  PubMed  Google Scholar 

  11. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–82.

    Article  CAS  PubMed  Google Scholar 

  12. Bouralexis S, Findlay DM, Evdokiou A. Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis: an international journal on programmed cell death. 2005;10:35–51.

    Article  CAS  Google Scholar 

  13. Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008;19:325–31.

    Article  CAS  PubMed  Google Scholar 

  14. Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O’Dwyer PJ, et al. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:2839–46.

    Article  CAS  Google Scholar 

  15. Hotte SJ, Hirte HW, Chen EX, Siu LL, Le LH, et al. A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2008;14:3450–5.

    Article  CAS  Google Scholar 

  16. Soria JC, Smit E, Khayat D, Besse B, Yang X, et al. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1527–33.

    Article  CAS  Google Scholar 

  17. Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, et al. Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther. 2001;299:31–8.

    CAS  PubMed  Google Scholar 

  18. Muhlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, et al. The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem. 2000;275:32208–13.

    Article  CAS  PubMed  Google Scholar 

  19. Bremer E, Samplonius D, Kroesen BJ, van Genne L, de Leij L, et al. Exceptionally potent anti-tumor bystander activity of an scFv:sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells. Neoplasia. 2004;6:636–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, et al. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem. 2005;280:10025–33.

    Article  CAS  PubMed  Google Scholar 

  21. Hartung F, Stuhmer W, Pardo LA. Tumor cell-selective apoptosis induction through targeting of k(v)10.1 via bifunctional TRAIL antibody. Mol Cancer. 2011;10:109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. ten Cate B, Bremer E, de Bruyn M, Bijma T, Samplonius D, et al. A novel AML-selective TRAIL fusion protein that is superior to gemtuzumab ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia. 2009;23:1389–97.

    Article  PubMed  Google Scholar 

  23. Loging WT, Lal A, Siu IM, Loney TL, Wikstrand CJ, et al. Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res. 2000;10:1393–402.

    Article  CAS  PubMed  Google Scholar 

  24. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92:1295–302.

    Article  CAS  PubMed  Google Scholar 

  25. Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (MRP3) in cholestatic rat liver. Hepatology. 2001;34:351–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kool M, de Haas M, Scheffer GL, Scheper RJ, van Eijk MJ, et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 1997;57:3537–47.

    CAS  PubMed  Google Scholar 

  27. Haga S, Hinoshita E, Ikezaki K, Fukui M, Scheffer GL, et al. Involvement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma. Jpn J Cancer Res: Gann. 2001;92:211–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kuan CT, Srivastava N, McLendon RE, Marasco WA, Zalutsky MR, et al. Recombinant single-chain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer. 2010;127:598–611.

    Google Scholar 

  29. Kuan CT, Wakiya K, Herndon 2nd JE, Lipp ES, Pegram CN, et al. MRP3: a molecular target for human glioblastoma multiforme immunotherapy. BMC cancer. 2010;10:468.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ni CW, Zhao CY, Lang Y, Su J, Le Y. et al [Induction of apoptosis in U251 polymorphic glioblastoma cells by recombinant antiMRP3(scFv)-sTRAIL fusion protein]. Chinese J Biochem and Mol Biol. 2012;28:761–7.

    CAS  Google Scholar 

  31. Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, et al. Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer. 2004;109:281–90.

    Google Scholar 

  32. Scheffer GL, Kool M, de Haas M, de Vree JM, Pijnenborg AC, et al. Tissue distribution and induction of human multidrug resistant protein 3. Lab Investig; a journal of technical methods and pathology. 2002;82:193–201.

    Article  CAS  Google Scholar 

  33. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91:2076–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kapust RB, Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci: a publication of the Protein Society. 1999;8:1668–74.

    Article  CAS  Google Scholar 

  35. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, et al. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. The Journal of biological chemistry. 1997;272:25417–20.

    Article  CAS  PubMed  Google Scholar 

  36. Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, et al. Bortezomib sensitizes primary human astrocytoma cells of who grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2007;13:3403–12.

    Article  CAS  Google Scholar 

  37. Panner A, Parsa AT, Pieper RO. Use of Apo2L/TRAIL with mTOR inhibitors in the treatment of glioblastoma multiforme. Expert Rev Anticancer Ther. 2006;6:1313–22.

    Article  CAS  PubMed  Google Scholar 

  38. Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, et al. Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene. 2008;27:6646–56.

    Article  CAS  PubMed  Google Scholar 

  39. Krakstad C, Chekenya M. Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer. 2010;9:135.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the Natural Science Foundation (No: 30571906) and the Key New Drug Creation of China (No: 2009ZX09102-234 and 2009ZX09103-689).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing-Hua Jiao or Jian Yin.

Additional information

Liang-Hua Wang and Chang-Wei Ni contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LH., Ni, CW., Lin, YZ. et al. Targeted induction of apoptosis in glioblastoma multiforme cells by an MRP3-specific TRAIL fusion protein in vitro. Tumor Biol. 35, 1157–1168 (2014). https://doi.org/10.1007/s13277-013-1155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1155-7

Keywords

Navigation