Skip to main content

Advertisement

Log in

T-cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and prognosis of non-small-cell lung cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Lung cancer is the leading cause of death worldwide. Non-small-cell lung cancer (NSCLC) accounts for most of these cases. T-cell immunoglobulin- and mucin-domain-containing molecule 3 (TIM-3) has been established as a negative regulatory molecule and plays a critical role in immune tolerance. Studies have shown that polymorphisms in TIM-3 gene can be associated with various diseases. The aim of this study was to investigate whether polymorphisms in the TIM-3 gene were associated with susceptibility to NSCLC. Three polymorphisms in TIM-3 gene (−1516G/T, −574G/T, and +4259T/G) were identified by polymerase chain reaction–restriction fragment length polymorphism in 432 NSCLC patients and 466 healthy controls. Results showed that frequencies of TIM-3 +4259TG genotype for cases and controls were 10.9 and 4.1 %, respectively; subjects carrying the +4259TG genotype had a 2.81-fold increased risk of NSCLC compared to the wild-type genotype (P < 0.0001). The TIM-3 −1516G/T and −574G/T polymorphisms did not show any correlation with NSCLC. In addition, when analyzing the survival time of NSCLC patients with TIM-3 +4259T/G polymorphism, cases with +4259TG genotype had significantly shorter survival time compared to the wild-type patients (15.2 months vs. 26.7 months, P = 0.007). These results suggested polymorphism in TIM-3 gene is associated with increased susceptibility to NSCLC and could be used as prognostic factor for this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ishikawa M, Kitayama J, Yamauchi T, Kadowaki T, Maki T, Miyato H. Adiponectin inhibits the growth and peritoneal metastasis of gastric cancer through its specific membrane receptors AdipoR1 and AdipoR2. Cancer Sci. 2007;98:1120–7.

    Article  PubMed  CAS  Google Scholar 

  2. Lawrence RE, Salgia R. MET molecular mechanisms and therapies in lung cancer. Cell Adh Migr. 2010;4:146–52.

    Article  PubMed  Google Scholar 

  3. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science. 2007;318:1141–3.

    Article  PubMed  CAS  Google Scholar 

  4. Hastings WD, Anderson DE, Kassam N, Koguchi K, Greenfield EA, et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines. Eur J Immunol. 2009;39:2492–501.

    Article  PubMed  CAS  Google Scholar 

  5. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–41.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–52.

    Article  PubMed  CAS  Google Scholar 

  7. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4:1102–10.

    Article  PubMed  CAS  Google Scholar 

  8. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003;4:1093–101.

    Article  PubMed  CAS  Google Scholar 

  9. Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med. 2008;205:2763–79.

    Article  PubMed  CAS  Google Scholar 

  10. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction inmelanoma patients. J Exp Med. 2010;207:2175–86.

    Article  PubMed  CAS  Google Scholar 

  11. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94.

    Article  PubMed  CAS  Google Scholar 

  12. Zhuang X, Zhang X, Xia X, Zhang C, Liang X, Gao L, et al. Ectopic expression of TIM-3 in lung cancers: a potential independent prognostic factor for patients with NSCLC. Am J Clin Pathol. 2012;137(6):978–85.

    Article  PubMed  CAS  Google Scholar 

  13. Gao X, Zhu Y, Li G, Huang H, Zhang G, Wang F, et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One. 2012. doi:10.1371/journal.pone.0030676.

  14. Groome PA, Bolejack V, Crowley JJ, Kennedy C, Krasnik M, Sobin LH, et al. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumors. J Thorac Oncol. 2007;2:694–705.

    Article  PubMed  Google Scholar 

  15. Chae SC, Song JH, Pounsambath P, Yuan HY, Lee JH, Kim JJ, et al. Molecular variations in Th1-specific cell surface gene Tim-3. Exp Mol Med. 2004;36:274–8.

    Article  PubMed  CAS  Google Scholar 

  16. Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB, et al. Cutting edge: T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity. J Immunol. 2006;176:6411–5.

    PubMed  CAS  Google Scholar 

  17. Chae SC, Park YR, Shim SC, Yoon KS, Chung HT. The polymorphisms of Th1 cell surface gene Tim-3 are associated in a Korean population with rheumatoid arthritis. Immunol Lett. 2004;95:91–5.

    Article  PubMed  CAS  Google Scholar 

  18. Chae SC, Park YR, Lee YC, Lee JH, Chung HT. The association of TIM-3 gene polymorphism with atopic disease in Korean population. Hum Immunol. 2004;65:1427–31.

    Article  PubMed  CAS  Google Scholar 

  19. Cao B, Zhu L, Zhu S, Li D, Zhang C, Xu C, et al. Genetic variations and haplotypes in TIM-3 gene and the risk of gastric cancer. Cancer Immunol Immunother. 2010;59:1851–7.

    Article  PubMed  CAS  Google Scholar 

  20. Boenisch O, D’Addio F, Watanabe T, Elyaman W, Magee CN, et al. TIM-3: a novel regulatory molecule of alloimmune activation. J Immunol. 2010;185:5806–19.

    Article  PubMed  CAS  Google Scholar 

  21. Wang L, Pino-Lagos K, de Vries VC, Guleria I, Sayegh MH, et al. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci U S A. 2008;105:9331–6.

    Article  PubMed  CAS  Google Scholar 

  22. Seki M, Oomizu S, Sakata KM, Sakata A, Arikawa T, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol. 2008;127:78–88.

    Article  PubMed  CAS  Google Scholar 

  23. Zhuang X, Zhang X, Xia X, Zhang C, Liang X, et al. Ectopic expression of TIM-3 in lung cancers: a potential independent prognostic factor for patients with NSCLC. Am J Clin Pathol. 2012;137:978–85.

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haihan Song or Qinchuan Li.

Additional information

Jianwen Bai and Xiaoyan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Li, X., Tong, D. et al. T-cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and prognosis of non-small-cell lung cancer. Tumor Biol. 34, 805–809 (2013). https://doi.org/10.1007/s13277-012-0610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0610-1

Keywords

Navigation