Skip to main content
Log in

MMP1-1607 1G/2G polymorphism and lung cancer risk: a meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

Matrix metalloproteinase-1 (MMP-1) plays an important role in the breakdown of extracellular matrix and mediates pathways of apoptosis, angiogenesis, and immunity. It has been demonstrated that MMP-1 overexpression is associated with tumor initiation, invasion, and metastasis. Many studies have investigated the association between MMP1-1607 1G/2G polymorphism and lung cancer risk, but the impact of MMP1-1607 1G/2G polymorphism on lung cancer is unclear owing to the obvious inconsistence among those studies. This study aimed to quantify the strength of the association between MMP1-1607 1G/2G polymorphism and lung cancer risk. We searched the PubMed, Embase, and Wanfang databases for studies on the association between MMP1-1607 1G/2G polymorphism and risk of lung cancer. We estimated summary odds ratio (OR) with its corresponding 95 % confidence interval (95%CI) to assess the association. Overall, MMP1-1607 1G/2G polymorphism was associated with increased risk of lung cancer under four genetic models (OR2G versus 1G = 1.21, 95 %CI 1.06–1.37; OR2G2G versus 1G1G = 1.36, 95%CI 1.09–1.70; OR2G2G versus 2G1G+1G1G = 1.33, 95 %CI 1.10–1.61; and OR2G2G+2G1G versus 1G1G = 1.15, 95 %CI 1.04–1.27). Meta-analyses of studies with high quality showed that MMP1-1607 1G/2G polymorphism was still associated with lung cancer risk under those four genetic models. Subgroup analyses by ethnicity and sensitivity analyses further identified the significant association in East Asians. No evidence of publication bias was observed. Meta-analyses of available data show a significant association between MMP1-1607 1G/2G polymorphism and lung cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Papagiannis A. Multidisciplinary management of lung cancer. N Engl J Med. 2004;350:2008–10.

    Article  PubMed  CAS  Google Scholar 

  3. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.

    Article  PubMed  CAS  Google Scholar 

  4. Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol. 2011;12:399–408.

    Article  PubMed  CAS  Google Scholar 

  5. Steliga MA, Dresler CM. Epidemiology of lung cancer: smoking, secondhand smoke, and genetics. Surg Oncol Clin N Am. 2011;20:605–18.

    Article  PubMed  Google Scholar 

  6. Yokota J, Shiraishi K, Kohno T. Genetic basis for susceptibility to lung cancer: recent progress and future directions. Adv Cancer Res. 2010;109:51–72.

    Article  PubMed  CAS  Google Scholar 

  7. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    Article  PubMed  CAS  Google Scholar 

  8. Attia J, Thakkinstian A, D'Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol. 2003;56:297–303.

    Article  PubMed  Google Scholar 

  9. Petitti DB, Contreras R, Ziel FH, Dudl J, Domurat ES, Hyatt JA. Evaluation of the effect of performance monitoring and feedback on care process, utilization, and outcome. Diabetes Care. 2000;23:192–6.

    Article  PubMed  CAS  Google Scholar 

  10. Sotiriadis A, Makrigiannakis A, Stefos T, Paraskevaidis E, Kalantaridou SN. Fibrinolytic defects and recurrent miscarriage: a systematic review and meta-analysis. Obstet Gynecol. 2007;109:1146–55.

    Article  PubMed  Google Scholar 

  11. Su MT, Lin SH, Chen YC. Genetic association studies of angiogenesis- and vasoconstriction-related genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Hum Reprod Update. 2011;17:803–12.

    Article  PubMed  CAS  Google Scholar 

  12. Salanti G, Amountza G, Ntzani EE, Ioannidis JP. Hardy–Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet. 2005;13:840–8.

    Article  PubMed  CAS  Google Scholar 

  13. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Canc Inst. 1959;22:719–48.

    CAS  Google Scholar 

  14. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  PubMed  CAS  Google Scholar 

  15. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  Google Scholar 

  16. Cochran WG. The comparison of percentages in matched samples. Biometrika. 1950;37:256–66.

    PubMed  CAS  Google Scholar 

  17. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21:1559–73.

    Article  PubMed  Google Scholar 

  18. Tobias A. Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull. 1999;8:15–7.

    Google Scholar 

  19. Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, Mountain JL, Perez-Stable EJ, Sheppard D, Risch N. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med. 2003;348:1170–5.

    Article  PubMed  Google Scholar 

  20. Bhopal R. Glossary of terms relating to ethnicity and race: for reflection and debate. J Epidemiol Commun Health. 2004;58:441–5.

    Article  CAS  Google Scholar 

  21. Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316(469):470–1.

    Google Scholar 

  22. Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  CAS  Google Scholar 

  23. Liu L, Wu J, Wu C, Wang Y, Zhong R, Zhang X, Tan W, Nie S, Miao X, Lin D. A functional polymorphism (−1607 1G– > 2G) in the matrix metalloproteinase-1 promoter is associated with development and progression of lung cancer. Cancer. 2011;117:5172–81.

    Article  PubMed  CAS  Google Scholar 

  24. Hart K, Landvik NE, Lind H, Skaug V, Haugen A, Zienolddiny S. A combination of functional polymorphisms in the casp8, mmp1, il10 and seps1 genes affects risk of non-small cell lung cancer. Lung Canc-J IASLC. 2011;71:123–9.

    Article  Google Scholar 

  25. Gonzalez-Arriaga P, Lopez-Cima MF, Fernandez-Somoano A, Pascual T, Marron MG, Puente XS, Tardon A. Polymorphism +17 c/g in matrix metalloprotease mmp8 decreases lung cancer risk. BMC Canc. 2008;8:378.

    Article  Google Scholar 

  26. Wei WQ, Liang XQ, Wen XP. The association of mmp-1-1607(1G–2G) single nucleotide polymorphism with the susceptibility to non-small cell lung carcinoma in Guizhou Han nationality. J Guiyang Med College. 2007;32:267–72 [Aticle in Chinese].

    CAS  Google Scholar 

  27. Cheng XL. Correlation of single nucleotide polymorphism in the matrix metalloproteinase-1 promoter(−1607) 1G/2G with risk of lung cancer. J Shanxi Med Univ. 2007;38:777–9 [Article in Chinese].

    CAS  Google Scholar 

  28. Zhang WQ, Lin H, Zhou YA, Wang YJ, Cheng QS. Association of mmp-1-1607 1G/2G single nucleotide polymorphism with susceptibility to lung cancer in northwestern Chinese population of Han nationality. Chin J Med Genet. 2006;23:313–5 [Article in Chinese].

    CAS  Google Scholar 

  29. Su L, Zhou W, Asomaning K, Lin X, Wain JC, Lynch TJ, Liu G, Christiani DC. Genotypes and haplotypes of matrix metalloproteinase 1, 3 and 12 genes and the risk of lung cancer. Carcinogenesis. 2006;27:1024–9.

    Article  PubMed  CAS  Google Scholar 

  30. Fang S, Jin X, Wang R, Li Y, Guo W, Wang N, Wang Y, Wen D, Wei L, Zhang J. Polymorphisms in the mmp1 and mmp3 promoter and non-small cell lung carcinoma in north China. Carcinogenesis. 2005;26:481–6.

    Article  PubMed  CAS  Google Scholar 

  31. Schabath MB, Delclos GL, Martynowicz MM, Greisinger AJ, Lu C, Wu X, Spitz MR. Opposing effects of emphysema, hay fever, and select genetic variants on lung cancer risk. Am J Epidemiol. 2005;161:412–22.

    Article  PubMed  Google Scholar 

  32. Zhu Y, Spitz MR, Lei L, Mills GB, Wu X. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer susceptibility. Cancer Res. 2001;61:7825–9.

    PubMed  CAS  Google Scholar 

  33. Liu D, Guo H, Li Y, Xu X, Yang K, Bai Y. Association between polymorphisms in the promoter regions of matrix metalloproteinases (mmps) and risk of cancer metastasis: a meta-analysis. PLoS One. 2012;7:e31251.

    Article  PubMed  CAS  Google Scholar 

  34. Peters J, Mengersen K. Selective reporting of adjusted estimates in observational epidemiology studies: reasons and implications for meta-analyses. Eval Health Prof. 2008;31:370–89.

    Article  PubMed  Google Scholar 

  35. Li Y, Qiu LX, Shen XK, Lv XJ, Qian XP, Song Y. A meta-analysis of tp53 codon 72 polymorphism and lung cancer risk: evidence from 15,857 subjects. Lung Canc-J IASLC. 2009;66:15–21.

    Article  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, XY., Wang, XD. & Zang, DY. MMP1-1607 1G/2G polymorphism and lung cancer risk: a meta-analysis. Tumor Biol. 33, 2385–2392 (2012). https://doi.org/10.1007/s13277-012-0502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0502-4

Keywords

Navigation