Skip to main content

Advertisement

Log in

Alteration in miRNA gene expression pattern in acute promyelocytic leukemia cell induced by arsenic trioxide: a possible mechanism to explain arsenic multi-target action

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are involved in cancer pathogenesis, apoptosis, and cell growth, and these miRNAs are thought to be functional as oncogenes and/or tumor suppressors in the gene regulatory networks. We studied the potential contribution of miRNAs in acute promyelocytic leukemia (APL) cell NB4 during the apoptosis induction by arsenic trioxide (ATO). The apoptotic effects of ATO on the NB4 cell line at a pharmacological dose (2 μM) was verified using cell growth and viability assays, MTT assay, BrdU cell proliferation assay, flow cytometric analysis, and caspase-3 activity assay. miRNAs from untreated and 2 μM ATO-treated NB4 cell line were extracted, purified, and converted to complementary DNAs. Differential expressions of 88 cancer-related miRNAs were analyzed by real-time reverse transcription PCR using miRNA PCR cancer-array system. After normalizing to the average Ct value of three housekeeping genes in the array (U6, SNORD47, and SNORD48), the fold change of miRNAs was calculated in the ATO-treated cells as compared to untreated. Among the 88 cancer-focused miRNAs, 51 miRNAs were found to be differentially expressed more than 2-fold after ATO treatment. Of these, 48 miRNAs were upregulated up to 21.65-fold changes, while three miRNAs were downregulated up to 5.19-fold changes. By screening the literature, a majority of these upregulated miRNAs were found to have tumor and/or metastatic suppressors’ functions associated with cell cycle arrest and apoptosis, as well as inhibition of angiogenesis, invasion, and metastasis. Our results demonstrate that ATO, at the relevant concentration, modulate a substantial number of cancer-related miRNAs in APL cell line; most of these are known to function as a tumor and/or metastatic suppressors and have confirmed targets involved in cell cycle arrest and apoptosis. The results of this study support the hypothesis that miRNAs may play a mediatory role in eliciting the multi-target and pleiotropic action of ATO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martens JH et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.

    Article  PubMed  CAS  Google Scholar 

  2. de The H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010;10(11):775–83.

    Article  PubMed  Google Scholar 

  3. Sell S. Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev. 2005;1(3):197–205.

    Article  PubMed  CAS  Google Scholar 

  4. Ghavamzadeh A et al. Treatment of acute promyelocytic leukemia with arsenic trioxide without ATRA and/or chemotherapy. Ann Oncol. 2006;17(1):131–4.

    Article  PubMed  CAS  Google Scholar 

  5. Ghaffari SH et al. Real-time PCR analysis of PML-RAR alpha in newly diagnosed acute promyelocytic leukaemia patients treated with arsenic trioxide as a front-line therapy. Ann Oncol. 2006;17(10):1553–9.

    Article  PubMed  CAS  Google Scholar 

  6. Zhou GB et al. Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos Trans R Soc Lond B Biol Sci. 2007;362(1482):959–71.

    Article  PubMed  CAS  Google Scholar 

  7. Miller Jr WH et al. Mechanisms of action of arsenic trioxide. Cancer Res. 2002;62(14):3893–903.

    PubMed  CAS  Google Scholar 

  8. Zhang XW et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science. 2010;328(5975):240–3.

    Article  PubMed  CAS  Google Scholar 

  9. Jiang XH et al. Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of p53 and activation of caspase-3. Int J Cancer. 2001;91(2):173–9.

    Article  PubMed  CAS  Google Scholar 

  10. Carney DA. Arsenic trioxide mechanisms of action—looking beyond acute promyelocytic leukemia. Leuk Lymphoma. 2008;49(10):1846–51.

    Article  PubMed  CAS  Google Scholar 

  11. Visone R, Croce CM. MiRNAs and cancer. Am J Pathol. 2009;174(4):1131–8.

    Article  PubMed  CAS  Google Scholar 

  12. Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46(2):298–311.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang B et al. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  14. Subramanian S, Steer CJ. MicroRNAs as gatekeepers of apoptosis. J Cell Physiol. 2010;223(2):289–98.

    PubMed  CAS  Google Scholar 

  15. Yang BF, Lu YJ, Wang ZG. MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol. 2009;36(10):951–60.

    Article  PubMed  CAS  Google Scholar 

  16. Marcucci G et al. MicroRNA expression profiling in acute myeloid and chronic lymphocytic leukaemias. Best Pract Res Clin Haematol. 2009;22(2):239–48.

    Article  PubMed  CAS  Google Scholar 

  17. Li Z et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA. 2008;105(40):15535–40.

    Article  PubMed  CAS  Google Scholar 

  18. Dixon-McIver A et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One. 2008;3(5):e2141.

    Article  PubMed  Google Scholar 

  19. Garzon R et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111(6):3183–9.

    Article  PubMed  CAS  Google Scholar 

  20. Momeny M et al. Arsenic trioxide induces apoptosis in NB-4, an acute promyelocytic leukemia cell line, through up-regulation of p73 via suppression of nuclear factor kappa B-mediated inhibition of p73 transcription and prevention of NF-kappaB-mediated induction of XIAP, cIAP2, BCL-XL and survivin. Med Oncol. 2010;27(3):833–42.

    Article  PubMed  CAS  Google Scholar 

  21. Xiao F et al. miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res. 2009;37(Database issue):D105–10.

    Article  PubMed  CAS  Google Scholar 

  22. Papadopoulos GL et al. DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics. 2009;25(15):1991–3.

    Article  PubMed  CAS  Google Scholar 

  23. Shen ZX et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89(9):3354–60.

    PubMed  CAS  Google Scholar 

  24. Liu B et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 2009;66(2):169–75.

    Article  PubMed  Google Scholar 

  25. Sun Y et al. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun. 2010;391(3):1483–9.

    Article  PubMed  CAS  Google Scholar 

  26. Li S et al. Inhibition of both thioredoxin reductase and glutathione reductase may contribute to the anticancer mechanism of TH-302. Biol Trace Elem Res. 2010;136(3):294–301.

    Article  PubMed  CAS  Google Scholar 

  27. Wang G et al. Epidermal growth factor receptor-regulated miR-125a–5p—a metastatic inhibitor of lung cancer. FEBS J. 2009;276(19):5571–8.

    Article  PubMed  CAS  Google Scholar 

  28. Katakowski M et al. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest. 2010;28:1024–30.

    Article  PubMed  CAS  Google Scholar 

  29. Tie J et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010;6(3):e1000879.

    Article  PubMed  Google Scholar 

  30. Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood. 2009;114(6):1150–7.

    Article  PubMed  CAS  Google Scholar 

  31. Koturbash I et al. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat Res. 2011;722:94–105.

    PubMed  CAS  Google Scholar 

  32. Ivanov VN, Hei TK. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression. Exp Cell Res. 2006;312(20):4120–38.

    Article  PubMed  CAS  Google Scholar 

  33. Li Y et al. Arsenic trioxide induces apoptosis and G2/M phase arrest by inducing Cbl to inhibit PI3K/Akt signaling and thereby regulate p53 activation. Cancer Lett. 2009;284(2):208–15.

    Article  PubMed  CAS  Google Scholar 

  34. Diaz Z et al. Trolox selectively enhances arsenic-mediated oxidative stress and apoptosis in APL and other malignant cell lines. Blood. 2005;105(3):1237–45.

    Article  PubMed  CAS  Google Scholar 

  35. Saumet A et al. Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia. Blood. 2009;113(2):412–21.

    Article  PubMed  CAS  Google Scholar 

  36. Garzon R et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26(28):4148–57.

    Article  PubMed  CAS  Google Scholar 

  37. Cui X et al. Metabolism and the paradoxical effects of arsenic: carcinogenesis and anticancer. Curr Med Chem. 2008;15(22):2293–304.

    Article  PubMed  CAS  Google Scholar 

  38. Cui X et al. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol. 2006;37(3):298–311.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou X et al. Arsenite alters global histone H3 methylation. Carcinogenesis. 2008;29(9):1831–6.

    Article  PubMed  CAS  Google Scholar 

  40. Song B et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 2010;9:96.

    Article  PubMed  CAS  Google Scholar 

  41. Braun CJ et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 2008;68(24):10094–104.

    Article  PubMed  CAS  Google Scholar 

  42. Huang L et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2011;128:1758–69.

    Article  PubMed  CAS  Google Scholar 

  43. Guan Y et al. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer, 2010.

  44. Tavazoie SF et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.

    Article  PubMed  CAS  Google Scholar 

  45. Rauhala HE et al. miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer. 2010;127(6):1363–72.

    Article  PubMed  CAS  Google Scholar 

  46. Feng R et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett, 2010.

  47. Nasser MW et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 2008;283(48):33394–405.

    Article  PubMed  CAS  Google Scholar 

  48. Jiang L et al. Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer. 2010;10:318.

    Article  PubMed  Google Scholar 

  49. Cho WC. MicroRNAs in cancer - from research to therapy. Biochim Biophys Acta. 2010;1805(2):209–17.

    PubMed  CAS  Google Scholar 

  50. Cimmino A et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944–9.

    Article  PubMed  CAS  Google Scholar 

  51. Bandi N et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 2009;69(13):5553–9.

    Article  PubMed  CAS  Google Scholar 

  52. Mathews V et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol. 2010;28(24):3866–71.

    Article  PubMed  CAS  Google Scholar 

  53. Fornari F et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2009;69(14):5761–7.

    Article  PubMed  CAS  Google Scholar 

  54. Gao C et al. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer. 2010;116(1):41–9.

    PubMed  CAS  Google Scholar 

  55. Shi W et al. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 2010;126(9):2036–48.

    PubMed  CAS  Google Scholar 

  56. Bhaumik D et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27(42):5643–7.

    Article  PubMed  CAS  Google Scholar 

  57. Tian Y et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285(11):7986–94.

    Article  PubMed  CAS  Google Scholar 

  58. Sasayama T et al. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125(6):1407–13.

    Article  PubMed  CAS  Google Scholar 

  59. Borralho PM et al. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J. 2009;276(22):6689–700.

    Article  PubMed  CAS  Google Scholar 

  60. Akao Y et al. Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leuk Res. 2009;33(11):1530–8.

    Article  PubMed  CAS  Google Scholar 

  61. Ng EK et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer. 2009;101(4):699–706.

    Article  PubMed  CAS  Google Scholar 

  62. Wu Q et al. MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun. 2010;392(3):340–5.

    Article  PubMed  CAS  Google Scholar 

  63. Jeong SH, Wu HG, Park WY. LIN28B confers radio-resistance through the posttranscriptional control of KRAS. Exp Mol Med. 2009;41(12):912–8.

    Article  PubMed  CAS  Google Scholar 

  64. Shimizu S et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010;52(5):698–704.

    Article  PubMed  CAS  Google Scholar 

  65. Kozaki K et al. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68(7):2094–105.

    Article  PubMed  CAS  Google Scholar 

  66. Yu S et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010;70(14):6015–25.

    Article  PubMed  CAS  Google Scholar 

  67. Wang G, Mao W, Zheng S. MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett. 2008;582(25–26):3663–8.

    Article  PubMed  CAS  Google Scholar 

  68. Zhu W et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer, 2010.

  69. Ciafre SA et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351–8.

    Article  PubMed  CAS  Google Scholar 

  70. Voorhoeve PM et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124(6):1169–81.

    Article  PubMed  CAS  Google Scholar 

  71. Cho WJ et al. miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells. 2009;28(6):521–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed H. Ghaffari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 505 kb)

ESM 2

(DOC 193 kb)

ESM 3

(DOC 736 kb)

ESM 4

(DOC 1013 kb)

ESM 5

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaffari, S.H., Bashash, D., dizaji, M.Z. et al. Alteration in miRNA gene expression pattern in acute promyelocytic leukemia cell induced by arsenic trioxide: a possible mechanism to explain arsenic multi-target action. Tumor Biol. 33, 157–172 (2012). https://doi.org/10.1007/s13277-011-0259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0259-1

Keywords

Navigation