Skip to main content
Log in

Inhibition of oxaliplatin-induced neurotoxicity by silymarin through increased expression of brain-derived neurotrophic factor and inhibition of p38-MAPK

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Oxaliplatin is a chemotherapeutic agent that induces neuropathy through unknown mechanisms and therefore, its pharmacological performance is limited. Silymarin, a well-known hepatoprotective natural flavonoid mixture, has neuroprotective effects against certain neurodegenerative or neurotoxic stimuli.

Methods

We tested whether silymarin protects against oxaliplatin-induced neurotoxicity by using a neuronal cell culture system. Using differentiated SH-SY5Y cells, effects of silymarin on the oxaliplatin-mediated cytotoxicity for cell viability, oxidative stress and BDNF expression.

Results

Treatment of neuronal cells with oxaliplatin decreased cell viability, which was accompanied by increase in levels of the apoptotic marker cleaved poly-(ADP-ribose) polymerase (PARP) and malondialdehyde (MDA), a marker of lipid peroxidation. We found that oxaliplatin-induced cell death was partially mediated by p38-MAPK activation, which was significantly inhibited by silymarin. Silymarin slightly but not significantly inhibited oxaliplatin-induced oxidative stress. It also upregulated brain-derived neurotrophic factor (BDNF) expression and increased calcium-calmodulin kinase II and CREB activities. The observation of cell morphology revealed that silymarin induced dendritic outgrowth, which was validated by the increased expression of β-III tubulin protein. Furthermore, we observed that oxaliplatin-induced loss of dendritic outgrowth and BDNF downregulation were partially blocked by silymarin.

Conclusion

Our results suggested that oxaliplatin-induced neuropathy may be caused by combined mechanisms of increased oxidative stress, p38 MAPK-mediated apoptosis, and reduction of BDNF expression. All these changes were significantly inhibited by silymarin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldberg, R. M. et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 22, 23–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4, 307–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Land, S. R. et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSAABP C-7. J Clin Oncol 25, 2205–2211 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Carozzi, V. A., Canta, A. & Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms?. Neurosci Lett 596, 90–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Post-White, J., Ladas, E. J. & Kelly, K. M. Advances in the use of milk thistle (silybummarianum). Integr Cancer Ther 6, 104–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Loguercio, C. & Festi, D. Silybin and the liver: From basic research to clinical practice. World J Gastroenterol 17, 2288–2301 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borah, A. et al. Neuroprotective potential of silymarin against CNS disorders: insight into the pathways and molecular mechanisms of action. CNS Neurosci Ther 19, 847–853 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marchetti, P. et al. Apoptosis induced by oxaliplatin in human colon cancer HCT15 cell line. Anticancer Res 24, 219–226 (2004).

    CAS  PubMed  Google Scholar 

  9. Tan, S., Peng, X., Peng, W., Zhao, Y. & Wei, Y. Enhancement of oxaliplatin-induced apoptosis and tumor suppression by 30methyladenine in colon cancer. Oncol Lett 9, 2056–2062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P. & Aggarwal, B. B. Anticancer Potential of silymarin: From Bench to bed side. Anticancer Res 26, 4457–4498 (2006).

    CAS  PubMed  Google Scholar 

  11. Vue, B. & Chen, Q. H., The potential of flavonolignans in prostate cancer management. Curr Med Chem 23, 3925–3950 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Khorsandi, L., Saki, G., Bavarsad, N. & Mombeini, M. Silymarin induces a multi-targeted cell death process in the human colon cancer cell line HT-29. Biomed Phrmacother 94, 890–897 (2017).

    Article  CAS  Google Scholar 

  13. Kittur, S. et al. Neurotrophic and neuroprotective effects of milk thistle (silybummarianum) on neurons in culture. J Mol Neurosci 18, 265–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Lonze, B. E. & Ginty, D. D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Yan, X. et al. CaMKII-mediated CREB phosphorylation is involved in Ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation. PloS One 11, e0162784, Doi:10.1371/journal.pone.0162784.

  16. Surai, P. F. Silymarin as a natural antioxidant: An Overview of the current evidence and perspectives. Antioxidants (Basel) 4, 204–247 (2015).

    Article  CAS  Google Scholar 

  17. Canals, J. M. et al. Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J Cell Physiol 213, 341–347 (2001).

    Google Scholar 

  18. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based longterm memory. Cell 88, 615–626 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Hu, Y., Liu, M. Y., Liu, P., Dong, X. & Boran, A. D. Neuroprotective effects of 3,6′-disinapoyl sucrose through increased BDNF levels and CREB phosphorylation via the CaMKII and ERK1/2 pathway. J Mol Neurosci 54, 600–607 (2014).

    Article  CAS  Google Scholar 

  21. Velasco, R. et al. Early predictors of oxaliplatin-induced cumulative neuropathy in colorectal cancer patients. J Neurol Neurosurg Psychiatry 85, 392–398 (2014).

    Article  PubMed  Google Scholar 

  22. Park, S. B. et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 63, 419–437 (2013).

    Article  PubMed  Google Scholar 

  23. Huang, Z. Z. et al. Cerebrospinal fluid oxaliplatincontribuetes to the acute pain induced by systemic administration of oxaliplatin. Anesthesiology 124, 1109–1121 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Massicot, F. et al. P2X7 cell death receptor activation and mitochondrial impairment in oxliplatin-induced apoptosis and neuronal injury: Cellular mechanisms and in vivo approach. PLoS One 8, e66830, Doi:10.1371/journal.pone.006830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao, W. H. & Bennett, G. J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153, 704–709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chocry, M., Leloup, L. & Kovacic, H. Reversion of resistance to oxaliplatin by inhibition of p38 MAPK in colorectal cancer cell lines: involvement of the calpain/Nox1 pathway. Oncotarget 8, 103710–103730 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu, H. F., Hu, H. C. & Chao, J. I. Oxaliplatin down-regulates survivin by p38 MAP kinase and proteasome in human colon cancer cells. Chem Biol Interact 188, 535–545 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Dalrymple, S. A. p38 mitogen activated protein kinase as a therapeutic target for Alzheimer’s disease. J Mol Neurosci 19, 295–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Hensley, K. et al. P38 kinase is activated in the Alzheimer’s disease brain. J Neurochem 72, 2053–2058 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Feijoo, C., Campbell, D. G., Jakes, R., Goedert, M. & Cuenda, A. Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly. J Cell Sci 118, 397–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Goedert, M. et al. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409, 57–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Jenkins, S. M., Zinnerman, M., Garner, C. & Johnson, G. V. Modulation of tau phosphorylation and intracellular localization by cellular stress. Biochem J 345, 263–270 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Criscuolo, C., Fabiani, C., Bonadonna, C., Origlia, N. & Domenici, L. BDNF prevents amyloid-dependent impairment of LPT in the entorhinal cortex by attenuating p38 MAPK phosphorylation. Neurobiol Aging 36, 1303–1309 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y., Liu, L., Barger, S. W. & Griffin, W. S. Interleukin-1 mediates pathological effects of microglia on Tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23, 1605–1611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, Y., Jiang, B., Ensign, W. Y., Vogt, P. K. & Han, J. Myogenic differentiation requires signaling through both phosphatidylinositol 3-kinase and p38 MAP kinase. Cell Signal 12, 751–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Zester, A., Gredinger, E. & Bengal, E. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem 274, 5193–5200 (1999).

    Article  Google Scholar 

  37. Eckert, R. L. et al. p38 Mitogen-activated protein kinases on the body surface-A function for p38 delta. J Invest Dermatol 120, 823–828 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wun Shin or Ju-Hee Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JY., Yi, H.G., Park, CS. et al. Inhibition of oxaliplatin-induced neurotoxicity by silymarin through increased expression of brain-derived neurotrophic factor and inhibition of p38-MAPK. Mol. Cell. Toxicol. 15, 145–152 (2019). https://doi.org/10.1007/s13273-019-0018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-019-0018-8

Keywords

Navigation