Skip to main content
Log in

Identification of lung cancer specific differentially methylated regions using genome-wide DNA methylation study

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Many molecular biomarkers have been suggested for the diagnosis, prognosis, and treatment response of lung cancer, but their clinical availability remains limited. DNA methylation is one such promising biomarker because it is stable and easily detected.

Methods

We conducted an epigenome-wide analysis using methyl binding domain (MBD) sequencing in tissues of lung cancer patients. Tumor and normal tissues were obtained from two patients who underwent surgery for non-small cell lung cancer.

Results

HOXA5, HOXA9, and other related genes were associated with the CGI-located DMRs in Patient 1, whereas the SSTR5 gene was found to be associated with the CGI-located DMRs in Patient 2. Interestingly, these DMR genes were mapped in the physical interaction networks that included previously known nonsmall cell lung cancer genes.

Conclusion

This genome-wide DNA methylation study showed an association between newly identified DMRs in CpG island promoter regions and previously known target genes for lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fitzmaurice, C. et al. The global burden of cancer 2013. JAMA Oncol 1, 505–527 (2015).

    Article  PubMed  Google Scholar 

  2. Park, J. Y. & Jang, S. H. Epidemiology of lung cancer in Korea: recent trends. Tuberc Respir Dis 79, 58–69 (2016).

    Article  Google Scholar 

  3. Jemal, A. et al. Global cancer statistics. CA Cancer J Clin 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  4. van der Aalst, C. M.. Ten Haaf, K. & de Koning, H. J. Lung cancer screening: latest developments and unanswered questions. Lancet Respir Med 4, 749–761 (2016).

    Google Scholar 

  5. SEER. SEERStat Fact Sheets: Lung and Bronchus Cancer 2016. Available online: http://seer.cancer.gov/statfacts/html/lungb.html.

  6. Balgkouranidou, I., Liloglou, T. & Lianidou, E. S. Lung cancer epigenetics: emerging biomarkers. Biomarkers Med 7, 49–58 (2013).

    Article  CAS  Google Scholar 

  7. Devarakonda, S., Morgensztern, D. & Govindan, R. Genomic alterations in lung adenocarcinoma. Lancet Oncol 16, e342–351 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. Esteller, M. Non-coding RNAs in human disease. Nature Rev Genet 12, 861–874 (2011).

    Article  PubMed  CAS  Google Scholar 

  9. Nemeth, A. & Langst, G. Chromatin higher order structure: opening up chromatin for transcription. Brief Funct Genomic 2, 334–343 (2004).

    Article  CAS  Google Scholar 

  10. Zhang, Y. Recent progress in the epigenetics and chromatin field. Cell Res 21, 373–374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ansari, J., Shackelford, R. E. & El-Osta, H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 5, 155–171 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mehta, A., Dobersch, S., Romero-Olmedo, A. J. & Barreto, G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev 34, 229–241 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. Brzezianska, E., Dutkowska, A. & Antczak, A. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep 40, 309–325 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576–589 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England) 26, 841–842 (2010).

  17. Lee, H. Y. et al. Differential expression of microRNAs and their target genes in non-small-cell lung cancer. Mol Med Rep 11, 2034–2040 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. COSMIC. Catalogue of somatic mutations in cancer 2016. Available online: http://cancer.sanger.ac.uk/cosmic.

  19. David Warde-Farley et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38 (Web Server issue), W214-W220 (2010).

    Google Scholar 

  20. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hulbert, A. et al. Early detection of lung cancer using DNA promoter hypermethylation in plasma and sputum. Clin Cancer Res [Epub ahead of print] (2016).

    Google Scholar 

  22. Wang, R. et al. Genome-wide methylome analysis using MethylCap-seq uncovers 4 hypermethylated markers with high sensitivity for both adeno-and squamous-cellcervical carcinoma. Oncotarget 7, 80735–80750 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Wang, C. C. et al. HOXA5 inhibits metastasis via regulating cytoskeletal remodelling and associates with prolonged survival in non-small-cell lung carcinoma. PloS One 10, e0124191 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kaemmerer, D. et al. Somatostatin receptors in bronchopulmonary neuroendocrine neoplasms: new diagnostic, prognostic, and therapeutic markers. J Clin Endocrinol Metab 100, 831–840 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Pradhan, M. P., Desai, A. & Palakal, M. J. Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma. BMC Syst Biol 7, 141 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Maloisel, L. & Rossignol, J. L. Suppression of crossingover by DNA methylation in Ascobolus. Genes Dev 12, 1381–1389 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet 37, 853–862 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. Sargurupremraj, M. & Wjst, M. Transposable elements and their potential role in complex lung disorder. Respir Res 14, 99 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Damiani, L. A. et al. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res 68, 9005–9014 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Lujambio, A. et al. CpGisland hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29, 6390–6401 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zochbauer-Muller, S. et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61, 249–255 (2001).

    PubMed  CAS  Google Scholar 

  34. Ahrendt, S. A. et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 91, 332–339 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. Kneip, C. et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol 6, 1632–1638 (2011).

    Article  PubMed  Google Scholar 

  36. Hubers, A. J. et al. Combined sputum hypermethylation and eNose analysis for lung cancer diagnosis. J Clin Pathol 67, 707–711 (2014).

    Article  PubMed  Google Scholar 

  37. Xiao, P. et al. Methylation of P16 in exhaled breath condensate for diagnosis of non-small cell lung cancer. Lung cancer (Amsterdam, Netherlands) 83, 56–60 (2014).

    Article  Google Scholar 

  38. Brock, M. V. et al. DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med 358, 1118–1128 (2008).

    Article  PubMed  CAS  Google Scholar 

  39. Sandoval, J. et al. A prognostic DNA methylation signature for stage I non-small-cell lung cancer. J Clin Oncol 31, 4140–4147 (2013).

    Article  PubMed  Google Scholar 

  40. Hsu, H. S. et al. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 110, 2019–2026 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Liu, S. V., Fabbri, M., Gitlitz, B. J. & Laird-Offringa, I. A. Epigenetic therapy in lung cancer. Front Oncol 3, 135 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lyko, F. & Brown, R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97, 1498–1506 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Tang, M., Xu, W., Wang, Q., Xiao, W. & Xu, R. Potential of DNMT and its epigenetic regulation for lung cancer therapy. Curr Genomics 10, 336–352 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Merlo, A. et al. 5. CpGisland methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1, 686–692 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. Nair, S. S. et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpGbinding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpGsequence coverage bias. Epigenetics 6, 34–44 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Harris, R. A. et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nature Biotechnol 28, 1097–1105 (2010).

    Article  CAS  Google Scholar 

  47. Hogart, A. et al. Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites. Genome Res 22, 1407–1418 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Aberg, K. A. et al. MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case-control samples. Epigenomics 4, 605–621 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Shim Choi or Woo Jin Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Hong, SH., Oh, YM. et al. Identification of lung cancer specific differentially methylated regions using genome-wide DNA methylation study. Mol. Cell. Toxicol. 14, 315–322 (2018). https://doi.org/10.1007/s13273-018-0034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0034-0

Keywords

Navigation