Skip to main content
Log in

Adenosine A2a receptors activate Nuclear Factor-Kappa B (NF-κB) in rat hippocampus after exposure to different doses of MDMA

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

MDMA (3,4-methylenedioxy-N-methamphetamine) as an empathogenic drug causes neurotoxicity although the mechanisms have not been fully elucidated. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. A2a receptor activation inhibits Nuclear Factor-Kappa B (NF-κB) activation and nuclear translocation by a known mechanism. In the present study, we aimed to compare the NF-κB activity level in rat hippocampus between two doses of MDMA exposure (10 and 20 mg /kg) using either A2aR agonist (CGS) or A2aR antagonist (SCH). Adult male Sprague-Dawley rats were subjected to MDMA followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The hippocampi were then removed for western blot and RTPCR analyses. Administration of MDMA dose-dependently increased the expression of NF-κB both at mRNA and protein levels. We also found that administration of CGS following MDMA significantly increased the NF-κB expression especially in MDMA 20 +CGS group. By contrast, administration of the A2a-R antagonist SCH resulted in a dose-dependent decrease in NF-κB mRNA and protein. Our study results revealed that MDMA has powerful detrimental effects on expression of NF-κB in a dose-dependent manner. On the other hand, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-κB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Callaghan, J. P. & Miller, D. B. Neurotoxic effects of substituted amphetamines in rats and mice. in Handbook of Neurotoxicology (ed. Massaro, E.J.) 269–301 (Human Press NJ., Totowa, 2005).

    Google Scholar 

  2. Jimenez, A. et al. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells. Toxicol Appl Pharmacol 196:223–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt, C. J. Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7 (1987).

    CAS  PubMed  Google Scholar 

  4. Stone, D. M., Stahl, D. C., Hanson, G. R. & Gibb, J. W. The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Darvesh, A. S. & Gudelsky, G. A. Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT. Brain Res 1056:168–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Dluzen, D. E. et al. Markers associated with sex differences in methamphetamine-induced striatal dopamine neurotoxicity. Curr Neuropharmacol 9:40–44 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fredholm, B. B. et al. Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156 (1994).

    CAS  PubMed  Google Scholar 

  8. Ribeiro, J. A., Sebastiao, A. M. & de Mendonca, A. Participation of adenosine receptors in neuroprotection. Drug News Perspect 16:80–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Fredholm, B. B., AP, I. J., Jacobson, K. A., Klotz, K. N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552 (2001).

    CAS  PubMed  Google Scholar 

  10. Fontinha, B.M. et al. Adenosine A (2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. Neuropsychopharmacology 34:1865–1874 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz-Medina, J., Ledent, C., Carreton, O. & Valverde, O. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. J Psychopharmacol 25:550–564 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Kaplan, G. B. & Sears, M. T. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs. Psychopharmacology (Berl) 123:64–70 (1996).

    Article  CAS  Google Scholar 

  13. Salem, A. & Hope, W. Effect of adenosine receptor agonists and antagonists on the expression of opiate withdrawal in rats. Pharmacol Biochem Behav 57:671–679 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Calfee-Mason, K. G., Lee, E. Y., Spear, B. T. & Glauert, H. P. Role of the p50 subunit of NF-kappaB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate. Food Chem Toxicol 46:2062–2073 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pennypacker, K. R., Kassed, C. A., Eidizadeh, S. & O’Callaghan, J. P. Brain injury: prolonged induction of transcription factors. Acta Neurobiol Exp (Wars) 60: 515–530 (2000).

    CAS  Google Scholar 

  16. Yamamoto, Y. & Gaynor, R. B. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29:72–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tiangco, D. A. et al. 3,4-Methylenedioxymethamphetamine activates nuclear factor-kappaB, increases intracellular calcium, and modulates gene transcription in rat heart cells. Cardiovasc Toxicol 5:301–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kaltschmidt, C., Kaltschmidt, B. & Baeuerle, P. A. Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech Dev 43:135–147 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H. & Baeuerle, P. A. Constitutive NF-kappa B activity in neurons. Mol Cell Biol 14, 3981-3992 (1994).

  20. Galter, D., Mihm, S. & Droge, W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem 221:639–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, K. A., Miller, D. B., Bowyer, J. F. & O’Callaghan, J. P. Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem 122:995–1009 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Kuhn, D. M., Francescutti-Verbeem, D. M. & Thomas, D. M. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann N Y Acad Sci 1074:31–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ladenheim, B. et al. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 58:1247–1256 (2000).

    CAS  PubMed  Google Scholar 

  24. Montiel-Duarte, C., Ansorena, E., Lopez-Zabalza, M. J., Cenarruzabeitia, E. & Iraburu, M. J. Role of reactive oxygen species, glutathione and NF-kappaB in apoptosis induced by 3,4-methylenedioxymethamphetamine (“Ecstasy”) on hepatic stellate cells. Biochem Pharmacol 67:1025–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Tiangco, D. A., Halcomb, S., Lattanzio, F. A., Jr. & Hargrave, B. Y. 3,4-Methylenedioxymethamphetamine alters left ventricular function and activates nuclear factor-kappa B (NF-kappaB) in a time and dose dependent manner. Int J Mol Sci 11:4843–4863 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kermanian, F. et al. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study. Metab Brain Dis 27:459–469 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Kermanian, F., Soleimani, M., Ebrahimzadeh, A., Haghir, H. & Mehdizadeh, M. Effects of adenosine A2a receptor agonist and antagonist on hippocampal nuclear factor-κB expression preceded by MDMA toxicity. Metab Brain Dis 28:45–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bexis, S. & Docherty, J. R. Effects of MDMA, MDA and MDEA on blood pressure, heart rate, locomotor activity and body temperature in the rat involve alpha-adrenoceptors. Br J Pharmacol 147:926–934 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. McNamara, R., Maginn, M. & Harkin, A. Caffeine induces a profound and persistent tachycardia in response to MDMA (“Ecstasy”) administration. Eur J Pharmacol 555:194–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Vandeputte, C. & Docherty, J. R. Vascular actions of 3,4-methylenedioxymethamphetamine in alpha (2A/D)-adrenoceptor knockout mice. Eur J Pharmacol 457:45–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Schreck, R., Albermann, K. & Baeuerle, P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17:221–237 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Arrigo, A. P. Gene expression and the thiol redox state. Free Radic Biol Med 27:936–944 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Bouloumie, A., Schini-Kerth, V. B. & Busse, R. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res 41:773–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Bowie, A. G. & O’Neill, L. A. Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase. J Immunol 165:7180–7188 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Colado, M. I. et al. A study of the neurotoxic effect of MDMA (‘ecstasy’) on 5-HT neurones in the brains of mothers and neonates following administration of the drug during pregnancy. Br J Pharmacol 121:827–833 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Imam, S. Z. et al. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 939:366–380 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Shankaran, M., Yamamoto, B. K. & Gudelsky, G. A. Involvement of the serotonin transporter in the formation of hydroxyl radicals induced by 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 385:103–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Miranda, M. et al. Oxidative stress in rat retina and hippocampus after chronic MDMA (’ecstasy’) administration. Neurochem Res 32:1156–1162 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Broening, H. W., Morford, L. L., Inman-Wood, S. L., Fukumura, M. & Vorhees, C. V. 3,4-methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci 21:3228–3235 (2001).

    CAS  PubMed  Google Scholar 

  40. Vorhees, C. V. et al. (+/−)3,4-Methylenedioxymethamphetamine (MDMA) dose-dependently impairs spatial learning in the morris water maze after exposure of rats to different five-day intervals from birth to postnatal day twenty. Dev Neurosci 31:107–120 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Baumann, M. H., Wang, X. & Rothman, R. B. 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 189:407–424 (2007).

    Article  CAS  Google Scholar 

  42. Green, A. R., Mechan, A. O., Elliott, J. M., O’Shea, E. & Colado, M. I. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kramer, K., Azmitia, E. C. & Whitaker-Azmitia, P. M. In vitro release of [3H]5-hydroxytryptamine from fetal and maternal brain by drugs of abuse. Brain Res Dev Brain Res 78:142–146 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Badon, L. A. et al. Changes in cardiovascular responsiveness and cardiotoxicity elicited during binge administration of Ecstasy. J Pharmacol Exp Ther 302:898–907 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Garcia, G. E. et al. Adenosine A2A receptor activation and macrophage-mediated experimental glomerulonephritis. FASEB J 22:445–454 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pedata, F., Corsi, C., Melani, A., Bordoni, F. & Latini, S. Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 939:74–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Sullivan, G. W., Fang, G., Linden, J. & Scheld, W. M. A2A adenosine receptor activation improves survival in mouse models of endotoxemia and sepsis. J Infect Dis 189:1897–1904 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Boison, D. & Shen, H. Y. Adenosine Kinase is a new therapeutic targetto prevent ischemic neuronal death. Open Drug Dis J 2:108–118 (2010).

    CAS  Google Scholar 

  50. Latini, S., Pazzagli, M., Pepeu, G. & Pedata, F. A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen Pharmacol 27:925–933 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Barger, S. W. & Mattson, M. P. Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Brain Res Mol Brain Res 40:116–126 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Guo, Q., Robinson, N. & Mattson, M. P. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J Biol Chem 273:12341–12351 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Kaltschmidt, C., Kaltschmidt, B. & Baeuerle, P. A. Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons. Proc Natl Acad Sci U S A 92:9618–9622 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Lezoualc’h, F., Sagara, Y., Holsboer, F. & Behl, C. High constitutive NF-kappaB activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 18:3224–3232 (1998).

    PubMed  Google Scholar 

  55. Hatano, E. et al. NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis. Gastroenterology 120:1251–1262 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, H., Lo, C. R. & Czaja, M. J. NF-kappaB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology 35:772–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Blondeau, N., Widmann, C., Lazdunski, M. & Heurteaux, C. Activation of the nuclear factor-kappaB is a key event in brain tolerance. J Neurosci 21:4668–4677 (2001).

    CAS  PubMed  Google Scholar 

  58. Ravati, A., Ahlemeyer, B., Becker, A., Klumpp, S. & Krieglstein, J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappaB. J Neurochem 78:909–919 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Hasko, G. & Pacher, P. A2A receptors in inflammation and injury: lessons learned from transgenic animals. J Leukoc Biol 83:447–455 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Milne, G. R. & Palmer, T. M. Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor. Scientific World Journal 11:320–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Arolfo, M. P., Yao, L., Gordon, A. S., Diamond, I. & Janak, P. H. Ethanol operant self-administration in rats is regulated by adenosine A2 receptors. Alcohol Clin Exp Res 28:1308–1316 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Bachtell, R. K. & Self, D. W. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 206:469–478 (2009).

    Article  CAS  Google Scholar 

  63. Castane, A., Soria, G., Ledent, C., Maldonado, R. & Valverde, O. Attenuation of nicotine-induced rewarding effects in A2A knockout mice. Neuropharmacology 51:631–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Sahraei, H., Motamedi, F., Khoshbaten, A. & Zarrindast, M.R. Adenosine A (2) receptors inhibit morphine self-administration in rats. Eur J Pharmacol 383:107–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Zarrindast, M. R., Naghipour, B., Roushan-zamir, F. & Shafaghi, B. Effects of adenosine receptor agents on the expression of morphine withdrawal in mice. Eur J Pharmacol 369:17–22 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Haghir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermanian, F., Mehdizadeh, M., Soleimani, M. et al. Adenosine A2a receptors activate Nuclear Factor-Kappa B (NF-κB) in rat hippocampus after exposure to different doses of MDMA. Mol. Cell. Toxicol. 10, 59–66 (2014). https://doi.org/10.1007/s13273-014-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0007-x

Keywords

Navigation