Skip to main content
Log in

Prospects and challenges of epigenomics in crop improvement

  • Perspective
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

The advent of high-throughput epigenome mapping techniques has ushered in a new era of multiomics with powerful tools now available to map and record genomic output at different levels. Integrating the different components of the epigenome from these multiomics measures allows investigations of cis-regulatory elements on a genome-scale. Mapping of chromatin state, chromatin accessibility dynamics, and higher-order chromatin structure enables a new level of understanding of cell fate determination, identity and function in normal growth and development, disease resistance, and yield.

Objective

In this paper, the recent advances in epigenomics research of rice, maize, and wheat are reviewed, and the development trends of epigenomics of major crops in the coming years are projected.

Methods

We highlight the role of epigenomics in regulating growth and development and identifying potential distal cis-regulatory elements in three major crops, and discuss the prospects and challenges for new epigenetics-mediated breeding technologies in crop improvement.

Conclusion

In this review, we summarize and analyze recent epigenomic advances in three major crops epigenomics and discuss possibilities and challenges for future research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baum BR, Feldman M (2010) Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum. Genome 53:430–438

    Article  CAS  PubMed  Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920

    Article  PubMed  Google Scholar 

  • Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.21-21.29.29

    Article  Google Scholar 

  • Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y, Perez M, Domenichini S, Rodriguez NY, Granados S, Kim T, Blein et al (2020) Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol 21:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, Rusoff KT, Drew JC, Kolaczkowski B, Emerich DW et al (2016) Integrating DNA methylation and hene expression data in the development of the soybean-bradyrhizobium N2-fixing symbiosis. Front Microbiol 7:518

    PubMed  PubMed Central  Google Scholar 

  • de Souza LP, Borghi M, Fernie A (2020) Plant single-cell metabolomics-challenges and perspectives. Int J Mol Sci 21:8987

    Article  PubMed Central  Google Scholar 

  • Fang Y, Chen L, Lin K, Feng Y, Zhang P, Pan X, Sanders J, Wu Y, Wang XE, Su Z et al (2019) Characterization of functional relationships of R-loops with gene transcription and epigenetic modifications in rice. Genome Res 29:1287–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoshal B, Picard CL, Vong B, Feng S, Jacobsen SE (2021) CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc Natl Acad Sci USA 118:e2125016118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Zhu P, Jiao Y, Meng Y, Chen M (2011) PRIN: a predicted rice interactome network. BMC Bioinform 12:161

    Article  Google Scholar 

  • Guo X, Han F (2014) Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell 26:4311–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Fedak G, Guo W, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics 170:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D et al (2017) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA 115:E334–E341

    PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing, P (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  Google Scholar 

  • Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Curr Opin in Plant Biol 13:153–159

    Article  CAS  Google Scholar 

  • Jia J, Xie Y, Cheng J, Kong C, Wang M, Gao L, Zhao F, Guo J, Wang K, Li G et al (2021) Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol 22:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Li E, Liu H, Huang L, Zhang X, Dong X, Song W, Zhao H, Lai J (2019a) Long-range interactions between proximal and distal regulatory regions in maize. Nat Commun 10:2633

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang M, Lin K, Xie Y, Guo J, Ye L, Zhuang Y, Teng W, Ran X, Tong Y et al (2019b) The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biol 20:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tian T, Zhang K, You Q, Yan H, Zhao N, Yi X, Xu W, Su Z (2018) PCSD: a plant chromatin state database. Nucleic Acids Res 46:D1157–D1167

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Gallego-Bartolome J, Zhou Y, Zhong Z, Wang M, Wongpalee SP, Gardiner J, Feng S, Kuo PH, Jacobsen SE (2021a) Ectopic targeting of CG DNA methylation in Arabidopsis with the bacterial SssI methyltransferase. Nat Commun 12:3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu Q, Su H, Liu K, Xiao X, Li W, Sun Q, Birchler JA, Han F (2021b) Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Res 31:1409–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ (2019) The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat Plants 5:1250–1259

    Article  CAS  PubMed  Google Scholar 

  • Marand AP, Chen Z, Gallavotti A, Schmitz RJ (2021) A cis-regulatory atlas in maize at single-cell resolution. Cell 184:3041-3055e3021

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Xiong D, Zhao L, Ouyang W, Wang S, Sun J, Zhang Q, Guan P, Xie L, Li W et al (2019) Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat Commun 10:2632

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci U S A 101:18240–18245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulecio J, Verma N, Mejia-Ramirez E, Huangfu D, Raya A (2017) CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21:431–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi M, Li Z, Liu C, Hu W, Ye L, Xie Y, Zhuang Y, Zhao F, Teng W, Zheng Q et al (2018) CGT-seq: epigenome-guided de novo assembly of the core genome for divergent populations with large genome. Nucleic Acids Res 46:e107

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A et al (2018) The transcriptional landscape of polyploid wheat. Science 361:eaar6089

    Article  PubMed  Google Scholar 

  • Ran X, Zhao F, Wang Y, Liu J, Zhuang Y, Ye L, Qi M, Cheng J, Zhang Y (2020) Plant regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. Plant J 101:237–248

    Article  CAS  PubMed  Google Scholar 

  • Ricci WA, Lu Z, Ji L, Marand AP, Ethridge CL, Murphy NG, Noshay JM, Galli M, Mejia-Guerra MK, Colome-Tatche M et al (2019) Widespread long-range cis-regulatory elements in the maize genome. Nat Plants 5:1237–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome complexity, diversity, and dynamics. Science 326:1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Scott MF, Fradgley N, Bentley AR, Brabbs T, Corke F, Gardner KA, Horsnell R, Howell P, Ladejobi O, Mackay IJ et al (2021) Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol 22:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song B, Buckler ES, Wang H, Wu Y, Rees E, Kellogg EA, Gates DJ, Khaipho-Burch M, Bradbury PJ, Ross-Ibarra J et al (2021) Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res 31:1245–1257

    Article  PubMed Central  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, White RL, Davis R (1976) Hybridization of RNA to double-stranded DNA_ formation of R-loops. Proc Natl Acad Sci USA 73:2294–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    Article  PubMed  Google Scholar 

  • van Dijk ADJ, Kootstra G, Kruijer W, de Ridder D (2021) Machine learning in plant science and plant breeding. iScience 24:101890

    Article  PubMed  Google Scholar 

  • Wang M, Wang P, Tu L, Zhu S, Zhang L, Li Z, Zhang Q, Yuan D, Zhang X (2016) Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation. Nucleic Acids Res 44:4067–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Li Z, Zhang Y, Zhang Y, Xie Y, Ye L, Zhuang Y, Lin K, Zhao F, Guo J et al (2021) An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell 33:865–881

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkins O, Hafemeister C, Plessis A, Holloway-Phillips MM, Pham GM, Nicotra AB, Gregorio GB, Jagadish SV, Septiningsih EM, Bonneau R et al (2016) EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. Plant Cell 28:2365–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Liu M, Zhao L, Cao K, Wang P, Xu W, Sung WK, Li X, Li G (2021) RiceENCODE: a comprehensive epigenomic database as a rice encyclopedia of DNA elements. Mol Plant 14:1604–1606

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Xu H, Li K, Fan Y, Liu Y, Yang X, Sun Q (2017) The R-loop is a common chromatin feature of the Arabidopsis genome. Nat Plants 3:704–714

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Jiao W, Liu Y, Ye W, Wang X, Liu B, Song Q, Chen ZJ (2020) Dynamic and reversible DNA methylation changes induced by genome separation and merger of polyploid wheat. BMC Biol 18:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Wang Y, Chachar S, Tian J, Gu X (2020) eRice: a refined epigenomic platform for japonica and indica rice. Plant Biotechnol J 18:1642–1644

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li Z, Zhang Ye, Lin K, Peng Y, Ye L, Zhuang Y, Wang M, Xie Y, Guo J et al (2021) Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Res. https://doi.org/10.1101/gr.275658.121

  • Zhao L, Wang S, Cao Z, Ouyang W, Zhang Q, Xie L, Zheng R, Guo M, Ma M, Hu Z et al (2019) Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation. Nat Commun 10:3640

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Xie L, Zhang Q, Ouyang W, Deng L, Guan P, Ma M, Li Y, Zhang Y, Xiao Q et al (2020a) Integrative analysis of reference epigenomes in 20 rice varieties. Nat Commun 11:2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Dong L, Jiang C, Wang X, Xie J, Rashid MAR, Liu Y, Li M, Bu Z, Wang H et al (2020b) Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization. BMC Biol 18:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, McMullen MD, Bauer E, Schon CC, Gierl A, Frey M (2015) Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. J Exp Bot 66:3917–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Liu J, Qian L (2019) Epigenomic reprogramming in cardiovascular disease. Comput Epigenet Dis 9:149–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31920103006 and 31630049) and a National Science Foundation plant genome grant (IOS-1444514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangpu Han.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Liu, Y., Liu, C. et al. Prospects and challenges of epigenomics in crop improvement. Genes Genom 44, 251–257 (2022). https://doi.org/10.1007/s13258-021-01187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01187-9

Keywords

Navigation