Skip to main content
Log in

De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Rhododendron molle G. Don occupies an important phylogenetic node in the genus rhododendron with unique yellow flower and medicinal functions. However, only limited genetic resources and their genome information are available for the generation of rhododendron flowers. The next generation sequencing technologies enables generation of genomic resources in a short time and at a minimal cost, and therefore provide a turning point for rhododendron research. Our goal is to use the genetic information to facilitate the relevant research on flowering and flower color formation in R. molle. In total, 66,026 unigenes were identified, among which 31,298 were annotated in the NCBI non-redundant protein database and 22,410 were annotated in the Swiss-Prot database. Of these annotated unigenes, 9490 and 18,680 unigenes were assigned to clusters of orthologous groups and gene ontology categories, respectively. A total of 7177 genes were mapped to 118 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. In addition, 8266 simple sequence repeats (SSRs) were detected, and these SSRs will undoubtedly benefit rhododendron breeding work. Metabolic pathway analysis revealed that 32 unigenes were predicted to be involved in carotenoid biosynthesis. Our transcriptome revealed 32 engines that encode key enzymes in the carotenoid biosynthesis pathway, including PSY, PDS, LCYB, LCYE, etc. The content of β-carotene was much higher than the other carotenoids throughout the flower development. It was consistent with the key genes expression level in the carotenoid biosynthesis pathway by the Illumina expression profile analysis and the qRT-PCR analysis. Our study identified genes associated with carotenoid biosynthesis in R. molle and provides a valuable resource for understanding the flowering and flower color formation mechanisms in R. molle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruni I, De Mattia F, Labra M, Grassi F, Fluch S, Berenyi M, Ferrari C (2012) Genetic variability of relict Rhododendron ferrugineum L. populations in the Northern Apennines with some inferences for a conservation strategy. Plant Biosyst 146:24–32

    Article  Google Scholar 

  • Chen L, Li LN, Dai YP, Wang XR, Duan YF, Yang GD (2015) De novo transcriptome analysis of Osmanthus serrulatus Rehd. flowers and leaves by Illumina sequencing. Biochem Syst Ecol 61:531–540

    Article  CAS  Google Scholar 

  • Chen H, Chen X, Tian J, Yang Y, Liu Z, Hao X, Wang L, Wang S, Liang J, Zhang L et al (2016) Development of gene-based SSR markers in rice bean (Vigna umbellata L.) based on transcriptome data. PLoS ONE 11:e0151040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chosson E, Chaboud A, Chulia AJ, Rayhaud J (1998) Dihydroflavonol glycosides from Rhododendron ferrugineum. Phytochemistry 49:1431–1433

    Article  CAS  Google Scholar 

  • Eckert KA, Mowery A, Hile SE (2002) Misalignment-mediated DNA polymerase beta mutations: comparison of microsatellite and frame-shift error rates using a forward mutation assay. Biochemistry 41:10490–10498

    Article  PubMed  CAS  Google Scholar 

  • Gismondi A, Canini A (2013) Microsatellite analysis of Latial Olea europaea L. cultivars. Plant Biosyst 147:686–691

    Article  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Joaquín MT, Conesa DA (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo LN, Zhao XL, Gao XF (2016) De novo assembly and characterization of leaf transcriptome for the development of EST-SSR markers of the non-model species Indigofera szechuensis. Biochem Syst Ecol 68:36–43

    Article  CAS  Google Scholar 

  • Han Y, Wan HH, Cheng TR, Wang J, Yang WR, Pan HT, Zhang QX (2017) Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis. Sci Rep 7:43382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Huyen DTT, Ureshino K, Van DT, Miyajima I (2016) Co-pigmentation of anthocyanin-flavonol in the Blotch Area of Rhododendron simsii Planch. flowers. Hortic J 85:232–237

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2008) Kegg for linking genomes to life and the environment. Nucleic Acids Res 36:D480-D484

    Google Scholar 

  • Lawson MJ, Zhang LQ (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7:R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Lu M, Tang D, Shi Y (2015) Composition of carotenoids and flavonoids in narcissus cultivars and their relationship with flower color. PLoS ONE 10:e0142074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Lv X, Wang L, Qiu Z, Song X, Lin J, Chen W (2017) Transcriptome analysis reveals the accumulation mechanism of anthocyanins in ‘Zijuan’ tea (Camellia sinensis var. asssamica (Masters) kitamura) leaves. Plant Growth Regul 81:51–61

    Article  CAS  Google Scholar 

  • Liu MY, Qiao GR, Jiang J, Yang HQ, Xie LH, Xie JZ, Zhuo RY (2012) Transcriptome sequencing and de novo analysis for Ma Bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS ONE 7:e46766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo H, Sun C, Li Y, Wu Q, Song J, Wang D, Jia X, Li R, Chen S (2010) Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. Physiol Plant 139:1–12

    Article  PubMed  CAS  Google Scholar 

  • Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  PubMed  CAS  Google Scholar 

  • Miyajima I, Ureshino K, Kobayashi N, Akabane M (2000) Flower color and pigments of intersubgeneric hybrid between white-flowered evergreen and yellow-flowered deciduous azaleas. J Jpn Soc Hortic Sci 69:280–282

    Article  CAS  Google Scholar 

  • Mizuta D, Ban T, Miyajima I, Nakatsuka A, Kobayashi N (2009) Comparison of flower color with anthocyanin composition patterns in evergreen azalea. Sci Hortic 122:594–602

    Article  CAS  Google Scholar 

  • Nakatsuka A, Mizuta D, Kii Y, Miyajima I, Kobayashi N (2008) Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Sci Hortic 118:314–320

    Article  CAS  Google Scholar 

  • Ohmiya A (2013) Qualitative and quantitative control of carotenoid accumulation in flower petals. Sci Hortic 163:10–19

    Article  CAS  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandurangaiah S, Ravishankar KV, Shivashankar KS, Sadashiva AT, Pillakenchappa K, Narayanan SK (2016) Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content. J Biosciences 41:257–264

    Article  CAS  Google Scholar 

  • Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds. Front Plant Sci 7:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagawa JM, Stanley LE, LaFountain AM, Frank HA, Liu C, Yuan Y-W (2016) An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol 209:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ureshino K, Nakayama M, Miyajima I (2016) Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in azalea petals. Euphytica 207:401–417

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Ma Y, Ma L, Li Y, Wang S, Li L, Yang R, Wang Q (2016) Development and characterization of EST-SSR markers for Catalpa bungei (Bignoniaceae). Appl Plant Sci 4:1500117

    Article  Google Scholar 

  • Wang JJ, Wang HB, Ding L, Song AP, Shen F, Jiang JF, Chen SM, Chen FD (2017) Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium ‘Jinba’. Plant Mol Biol 93:593–606

    Article  PubMed  CAS  Google Scholar 

  • Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W et al (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10:866–877

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Sun X, Liu X, Li C, He L, Chen S, Su J (2016) Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don. Front Plant Sci 7:1547

    PubMed  PubMed Central  Google Scholar 

  • Yan J, Cai ZX, Shen ZJ, Zhang BB, Ma RJ, Yu ML (2015) Extraction and analytical methods of carotenoids in fruit of yellow flesh peach. J Fruit Sci 32:1267–1274

    CAS  Google Scholar 

  • Yang LE, Huang XQ, Lu QQ, Zhu JY, Lu S (2016) Cloning and characterization of the geranylgeranyl diphosphate synthase (GGPS) responsible for carotenoid biosynthesis in Pyropia umbilicalis. J Appl Phycol 28:671–678

    Article  CAS  Google Scholar 

  • Yuan H, Zhang J, Nageswaran D, Li L (2015) Carotenoid metabolism and regulation in horticultural crops. Hortic Res 2:15036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B, Liu C, Wang Y, Yao X, Wang F, Wu J, King GJ, Liu K (2015) Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytol 206:1513–1526

    Article  PubMed  CAS  Google Scholar 

  • Zhang YZ, Xu SZ, Cheng YW, Ya HY, Han JM (2016) Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet Mol Res 15:gmr.15017023

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Program (2013BAD01B070403), National Natural Science Foundation of China (31600570), Jiangsu Natural Science Foundation (BK20150548), Jiangsu Forestry Sciences Innovation Fund (lykj[2017]48), and Jiangsu Agricultural Sciences Innovation Fund (CX(16)1005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Liu.

Ethics declarations

Conflict of interest

Zheng Xiao declares that he does not have conflict of interest. Jiale Su declares that he does not have conflict of interest. Xiaobo Sun declares that she does not have conflict of interest. Chang Li declares that she does not have conflict of interest. Lisi He declares that she does not have conflict of interest. Shangping Cheng declares that he does not have conflict of interest. Xiaoqing Liu declares that she does not have conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human subjects or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Supplementary material 2 (XLSX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Su, J., Sun, X. et al. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing. Genes Genom 40, 591–601 (2018). https://doi.org/10.1007/s13258-018-0662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0662-8

Keywords

Navigation