Skip to main content
Log in

Development of a SCAR marker associated with salt tolerance in durum wheat (Triticum turgidum ssp. durum) from a semi-arid region

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Durum wheat (Triticum turgidum ssp. durum) is one of the main species of cultivated wheat. In arid and semi-arid areas, salinity stress reduces durum wheat productivity. This study used 26 durum wheat accessions from semi-arid regions in Tunisia to analyze plant tolerance to salt stress. Salt stress was experimentally applied by regularly submerging pots in NaCl solution. The salt tolerance trait index (STTI) and salt tolerance index (STI) of various growth parameters were used as criteria to select for salt tolerance. Analysis of genetic relationships was carried out to determine the genetic distance between durum wheat accessions. Based on simple sequence repeats analysis, a molecular marker for salt stress resistance in durum wheat was developed. Salt-treated plants had reduced morphological traits compared to control plants. Most STTIs in all genotypes were below 100 %. Based on STI, 8 accessions were found to be salt-resistant, 16 were salt-moderate, two were salt-susceptible. Analysis of the genetic relationships among 28 Tunisian durum wheat accessions revealed that landraces of the same nominal type are closely related. Of the 94 SSR primers investigated, three were selected and used to design sequence characterized amplified region (SCAR) primers. One SCAR primer pair, KUCMB_Xgwm403_2, produced a 207 bp band that was present in salt-resistant durum wheat lines but absent in salt-susceptible lines. The results suggest that KUCMB_Xgwm403_2 could be a potential genetic tag for salt-tolerant durum wheats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad M, Shahzad A, Iqbal M, Asif M, Hirani AH (2013) Morphological and molecular genetic variation in wheat for salinity tolerance at germination and early seedling stage. Aust J Crop Sci 7:66

    CAS  Google Scholar 

  • Ali Z, Salam A, Azhar FM, Khan IA (2007) Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. S Afr J Bot 73:70–75

    Article  CAS  Google Scholar 

  • Amar SB, Brini F, Sentenac H, Masmoudi K, Véry A-A (2014) Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1; 4 transporters. J Exp Bot 65:213–222

    Article  PubMed  Google Scholar 

  • Arabbeigi M, Arzani A, Majidi MM, Kiani R, Tabatabaei BES, Habibi F (2014) Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol Plant 36:2243–2251

    Article  CAS  Google Scholar 

  • Arora A, Kundu S, Dilbaghi N, Sharma I, Tiwari R (2014) Population structure and genetic diversity among Indian wheat varieties using microsatellite (SSR) markers. Aust J Crop Sci 8:1281–1289

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brini F, Amara I, Feki K, Hanin M, Khoudi H, Masmoudi K (2009) Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp. Durum [Desf.]) varieties showing contrasting tolerance to salt stress. Acta Physiol Plant 31:145–154

    Article  CAS  Google Scholar 

  • Burdon JJ, Barrett LG, Rebetzke G, Thrall PH (2014) Guiding deployment of resistance in cereals using evolutionary principles. Evol Appl 7:609–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao W, Hughes GR, Ma H, Dong Z (2001) Identification of molecular markers for resistance to Septoria nodorum blotch in durum wheat. Theor Appl Genet 102:551–554

    Article  CAS  Google Scholar 

  • Che Y, Yang Y, Yang X, Li X, Li L (2015) Phylogenetic relationship and diversity among Agropyron Gaertn. germplasm using SSRs markers. Plant Syst Evol 301:163–170

    Article  Google Scholar 

  • Ciuca M, Petcu E (2009) SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Rom Agric Res 26:21–24

    Google Scholar 

  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19:11–15

    Google Scholar 

  • El-Hendawy SE, Hu YC, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22:243–253

    Article  CAS  Google Scholar 

  • El-Hendawy SE, Hu Y, Schmidhalter U (2007) Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. J Integr Plant Biol 49:1352–1360

    Article  CAS  Google Scholar 

  • Gholizadeh A, Dehghani H, Dvorak Y (2014) Determination of the most effective traits on wheat yield under saline stress. Agric Adv 3:103–110

    Google Scholar 

  • Hachicha MJOJ, Job JO, Mtimet A (1994) Les sols salés et la salinisation en Tunisie. Sols de Tunisie 5:271–341

    Google Scholar 

  • Jogaiah S, Sharathchandra RG, Raj N, Vedamurthy AB, Shetty HS (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41:7815–7824

    Article  CAS  PubMed  Google Scholar 

  • Khoufi S, Khamassi K, da Silva JAT, Chaabane R, Naceur MBB (2012) Morphological and molecular characterization of six of the most frequently cultivated hard wheat varieties in Tunisia. J Plant Breed Crop Sci 4:106–114

    CAS  Google Scholar 

  • Kim SH, Kim DY, Yacoubi I, Seo YW (2014) Phenotypic and genotypic analyses of drought tolerance in Korean and tunisian wheat cultivars. Plant Breed Biotechnol 2:139–150

    Article  Google Scholar 

  • Kumla S, Doolgindachbaporn S, Sudmoon R, Sattayasai N (2012) Genetic variation, population structure and identification of yellow catfish, Mystus nemurus (C&V) in Thailand using RAPD, ISSR and SCAR marker. Mol Biol Rep 39:5201–5210

    Article  CAS  PubMed  Google Scholar 

  • Latiri K, Lhomme JP, Annabi M, Setter TL (2010) Wheat production in Tunisia: progress, inter-annual variability and relation to rainfall. Eur J Agron 33:33–42

    Article  Google Scholar 

  • Liu K, Muse S (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Mansour M, Hachicha M (2014) The vulnerability of tunisian agriculture to climate change. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, San Diego, pp 485–500

    Chapter  Google Scholar 

  • Moghaieb REA, Abdel-Hadi A-HA, Talaat NB (2013) Molecular markers associated with salt tolerance in Egyptian wheats. Afr J Biotechnol 10:18092–18103

    Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Pajares AJ, Martinez-Rodriguez L, Teruel M, Cabrero J, Camacho JP, Perfectti F (2011) A single, recent origin of the accessory B chromosome of the grasshopper Eyprepocnemis plorans. Genetics 187:853–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouni Y, Lakhdar A, Rabhi M, Smaoui A, Maria AR, Chedly A (2013) Effects of the halophytes Tecticornia indica and Suaeda fruticosa on soil enzyme activities in a Mediterranean Sabkha. Int J Phytoremediat 15:188–197

    Article  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012) High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Sci 52:292–304

    Article  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Roy S, Chakraborty U (2014) Salt tolerance mechanisms in salt tolerant grasses (STGs) and their prospects in cereal crop improvement. Bot Stud 55:31

    Article  Google Scholar 

  • Salem KFM, Mattar MZ (2014) Identification of microsatellite alleles for salt tolerance at seedling stage in wheat (Triticum aestivum L.). Life Sci J 11:1064–1073

    Google Scholar 

  • Samdur MY, Singh AL, Mathur RK, Manivel P, Chikani BM, Gor HK, Khan MA (2000) Field evaluation of chlorophyll meter for screening groundnut (Arachis hypogaea L.) genotypes tolerant to iron-deficiency chlorosis. Curr Sci (India) 79:211–213

    Google Scholar 

  • Saqib ZA, Akhtar J, Ul-Haq MA, Ahmad I (2012) Salt induced changes in leaf phenology of wheat plants are regulated by accumulation and distribution pattern of Na+ ion. Pak J Agr Sci 49:141–148

    Google Scholar 

  • Sardouie-Nasab S, Mohammadi-Nejad G, Zebarjadi A (2013) Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Mol Biol Rep 40:4661–4671

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad A, Ahmad M, Iqbal M, Ahmed I, Ali GM (2012) Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genet Mol Res 11:679–692

    Article  CAS  PubMed  Google Scholar 

  • Shtereva L, Vassilevska-Ivanova R, Kartzeva T, Kraptchev B (2015) Salt tolerance of two sunflower genotypes: Helianthus annuus and interspecific line Helianthus anuus × Helianthus mollis. Genet Plant Physiol 5:61–73

    Google Scholar 

  • Son J-H, Kim K-H, Shin S, Choi I, Kim H-S, Cheong Y-K, Lee C-K, Lee S-I, Choi J-Y, Park K-G (2014) Development of SCAR Markers for Korean Wheat Cultivars Identification. Plant Breed Biotechnol 2:224–230

    Article  Google Scholar 

  • Sonmezoglu OA, Bozmaz B, Yildirim A, Kandemir N, Aydin N (2012) Genetic characterization of Turkish bread wheat landraces based on microsatellite markers and morphological characters. Turk J Biol 36:589–597

    Google Scholar 

  • Turki N, Shehzad T, Harrabi M, Okuno K (2015) Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica 201:29–41

    Article  CAS  Google Scholar 

  • Vaillancourt A, Nkongolo KK, Michael P, Mehes M (2008) Identification, characterisation, and chromosome locations of rye and wheat specific ISSR and SCAR markers useful for breeding purposes. Euphytica 159:297–306

    Article  CAS  Google Scholar 

  • Van Bueren ETL, Backes G, De Vriend H, Østergård H (2010) The role of molecular markers and marker assisted selection in breeding for organic agriculture. Euphytica 175:51–64

    Article  Google Scholar 

  • Yang L, Fu S, Khan MA, Zeng W, Fu J (2013) Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. SpringerPlus 2:501

    Article  PubMed  PubMed Central  Google Scholar 

  • Yıldırım M, Kılıç H, Kendal E, Karahan T (2010) Applicability of chlorophyll meter readings as yield predictor in durum wheat. J Plant Nutr 34:151–164

    Article  Google Scholar 

  • Zhu M, Shabala S, Shabala L, Fan Y, Zhou MX (2016) Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci 202:115–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of “Next-Generation BioGreen21 Program for Agriculture & Technology Development (Project No. PJ01103501)” Rural Development Administration. Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Weon Seo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Kim, J.Y., Kim, D.Y. et al. Development of a SCAR marker associated with salt tolerance in durum wheat (Triticum turgidum ssp. durum) from a semi-arid region. Genes Genom 38, 939–948 (2016). https://doi.org/10.1007/s13258-016-0438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0438-y

Keywords

Navigation