Skip to main content
Log in

Functional mechanisms for diabetic nephropathy-associated genetic variants

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Diabetic nephropathy (DN) is one of the major complications of diabetes. A tremendous amount of genetic variations have been identified to be associated with DN. However, most of them only generate from statistical associations at the DNA level, generally without direct functional evidence regarding their association mechanisms underlying DN. Based on the publicly available datasets and resources, this study performed integrative analyses (expression quantitative trait loci analysis, differential gene expression analysis and functional prediction analysis) to detect the molecular functional mechanisms underlying the associations for DN. Among 150 selected (P < E-4) genetic associations that were archived in the public databases, two single nucleotide polymorphisms (SNPs) (rs3135377 and rs9469220) have been found to act as cis-effect regulators of the “identified” gene (HLA-DRA and HLA-DRB1). These eQTL genes have differential expression signals in the DN-associated cell groups. These SNPs were predicted as regulatory sites by utilizing online prediction tools. Our data suggest potential mechanistic links underlying the association between DN and two identified SNPs. These results could help us to have a deeper understanding of the functional relevance of genetic variants with susceptibility to DN, which is useful for pursuit of in-depth validation studies to dissect their involvements and molecular functional mechanisms in DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahn JH, Yu JH, Ko SH, Kwon HS, Kim DJ, Kim JH, Kim CS, Song KH, Won JC, Lim S et al (2014) Prevalence and determinants of diabetic nephropathy in Korea: Korea national health and nutrition examination survey. Diabetes Metab J 38:109–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves-Leon SV, Papais-Alvarenga R, Magalhaes M, Alvarenga M, Thuler LC, Fernandez YFO (2007) Ethnicity-dependent association of HLA DRB1-DQA1-DQB1 alleles in Brazilian multiple sclerosis patients. Acta Neurol Scand 115:306–311

    Article  CAS  PubMed  Google Scholar 

  • Amirzargar AA, Yalda A, Hajabolbaghi M, Khosravi F, Jabbari H, Rezaei N, Niknam MH, Ansari B, Moradi B, Nikbin B (2004) The association of HLA-DRB, DQA1, DQB1 alleles and haplotype frequency in Iranian patients with pulmonary tuberculosis. Int J Tuberc Lung Dis 8:1017–1021

    CAS  PubMed  Google Scholar 

  • Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Meng Y, Zhou J, Zhuo M, Ling F, Zhang Y, Du H, Wang X (2013) Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells. J Diabetes Res 2013:970435

    PubMed  PubMed Central  Google Scholar 

  • Consoli L, Lefevre A, Zivy M, de Vienne D, Damerval C (2002) QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize. Plant Mol Biol 48:575–581

    Article  CAS  PubMed  Google Scholar 

  • Corominas J, Marchesi JA, Puig-Oliveras A, Revilla M, Estelle J, Alves E, Folch JM, Ballester M (2015) Epigenetic regulation of the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. Genet Sel Evol 47:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreja T, Jovanovic Z, Rasche A, Kluge R, Herwig R, Tung YC, Joost HG, Yeo GS, Al-Hasani H (2010) Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome. Diabetologia 53:309–320

    Article  CAS  PubMed  Google Scholar 

  • Hamzeh AR, Nair P, Al-Khaja N, Al AM (2015) Association of HLA-DQA1 and -DQB1 alleles with type I diabetes in Arabs: a meta-analyses. Tissue Antigens 86:21–27

    Article  CAS  PubMed  Google Scholar 

  • Jones CA, Krolewski AS, Rogus J, Xue JL, Collins A, Warram JH (2005) Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int 67:1684–1691

    Article  PubMed  Google Scholar 

  • Ma ZJ, Sun P, Guo G, Zhang R, Chen LM (2013) Association of the HLA-DQA1 and HLA-DQB1 alleles in type 2 diabetes mellitus and diabetic nephropathy in the han ethnicity of China. J Diabetes Res 2013:452537

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda S, Osawa N, Hayashi T, Tsukada S, Kobayashi M, Kikkawa R (2007) Genetic variations associated with diabetic nephropathy and type II diabetes in a Japanese population. Kidney Int 72(Suppl):S43–S48

    Article  Google Scholar 

  • Marfella CG, Henninger N, LeBlanc SE, Krishnan N, Garlick DS, Holzman LB, Imbalzano AN (2008) A mutation in the mouse Chd2 chromatin remodeling enzyme results in a complex renal phenotype. Kidney Blood Press Res 31:421–432

    Article  CAS  PubMed  Google Scholar 

  • McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN, Hester JM, Wing MR, Bostrom MA, Rudock ME et al (2011) A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int 79:563–572

    Article  PubMed  Google Scholar 

  • Michaelson JJ, Loguercio S, Beyer A (2009) Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48:265–276

    Article  CAS  PubMed  Google Scholar 

  • Mueller PW, Rogus JJ, Cleary PA, Zhao Y, Smiles AM, Steffes MW, Bucksa J, Gibson TB, Cordovado SK, Krolewski AS et al (2006) Genetics of kidneys in diabetes (GoKinD) study: a genetics collection available for identifying genetic susceptibility factors for diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol 17:1782–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381

    Article  CAS  PubMed  Google Scholar 

  • Palmer ND, Ng MC, Hicks PJ, Mudgal P, Langefeld CD, Freedman BI, Bowden DW (2014) Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease. PLoS ONE 9:e88273

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezzolesi MG, Skupien J, Mychaleckyj JC, Warram JH, Krolewski AS (2010) Insights to the genetics of diabetic nephropathy through a genome-wide association study of the GoKinD collection. Semin Nephrol 30:126–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, Feolo M, Hindorff LA (2014) Phenotype–Genotype integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur J Hum Genet 22:144–147

    Article  CAS  PubMed  Google Scholar 

  • Reutens AT, Atkins RC (2011) Epidemiology of diabetic nephropathy. Contrib Nephrol 170:1–7

    Article  PubMed  Google Scholar 

  • Rezaieyazdi Z, Tavakkol-Afshari J, Esmaili E, Orouji E, Pezeshkpour F, Khodadoost M, Mazhani M, Sandooghi M (2008) Association of HLA-DQB1 allelic sequence variation with susceptibility to systemic lupus erythematosus. Iran J Allergy Asthma Immunol 7:91–95

    CAS  PubMed  Google Scholar 

  • Ritz E, Zeng XX, Rychlik I (2011) Clinical manifestation and natural history of diabetic nephropathy. Contrib Nephrol 170:19–27

    Article  PubMed  Google Scholar 

  • Rizvi S, Raza ST, Mahdi F (2014) Association of genetic variants with diabetic nephropathy. World J Diabetes 5:809–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotival M, Zeller T, Wild PS, Maouche S, Szymczak S, Schillert A, Castagne R, Deiseroth A, Proust C, Brocheton J et al (2011) Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS Genet 7:e1002367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M (2012) Linking disease associations with regulatory information in the human genome. Genome Res 22:1748–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaquist ER, Goetz FC, Rich S, Barbosa J (1989) Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Sinner MF, Tucker NR, Lunetta KL, Ozaki K, Smith JG, Trompet S, Bis JC, Lin H, Chung MK, Nielsen JB et al (2014) Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation 130:1225–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson G, Valdes AM, Noble JA, Kockum I, Grote MN, Najman J, Erlich HA, Cucca F, Pugliese A, Steenkiste A et al (2007) Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 70:110–127

    Article  CAS  PubMed  Google Scholar 

  • Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K (2011) Transcriptome analysis of human diabetic kidney disease. Diabetes 60:2354–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants (NOS. 81302501 and 81560529)from National Natural Science Foundation of China, the grants (NOS.20151BBG70249, 20122BAB215005 and 20132BAB215005) from Natural Science Foundation of Jiangxi Province, the grant (NO.GJJ14093) from the Foundation of the Education Department of Jiangxi Province, the grant (NO.20155643) from the Foundation of the Health Department of Jiangxi Province, and the grant (NOS. 201410403132, 201510403039, YC2015-S041, 20140611, 2015195 and 14001840) from Nanchang university Students’ innovation and entrepreneurship training program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Chengxin Gong and Chaopeng Xiong contributed equally to this study.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Xu, Y., Fan, Y. et al. Functional mechanisms for diabetic nephropathy-associated genetic variants. Genes Genom 38, 595–600 (2016). https://doi.org/10.1007/s13258-016-0415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0415-5

Keywords

Navigation