Skip to main content
Log in

Characterization and mapping of d13, a dwarfing mutant gene, in rice

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Plant height is one of the most important agronomic traits in crop breeding because dwarf and semi-dwarf cultivars are resistant to lodging and have led to remarkable yield increases in cereal crops. Although several genes related to gibberellins signaling or biosynthesis resulting in dwarfism have been isolated, however, lots of causal genes controlling dwarfism remain to be uncovered. We characterized a dwarf mutant (ID13) in rice. The mutant displayed several altered phenotypes compared to the wild type, such as reduced plant height, increased tiller number, short and rounded leaf tips, presence of a yellowish stripe on the leaf blade, late and asynchronous heading, strong root systems, short erect panicle, smaller seed size, etc. The dwarfism of the mutant was responsive to gibberellic acid (GA), based on the analyses of two GA-mediated processes. Anatomical observations revealed that the mutant plants had fewer vascular bundles and reduced cell size compared with wild type plants. Genetic analysis indicated that the dwarf mutant was controlled by a single recessive gene, d13, which was flanked by two STS markers, DMR-3 and S5789, within the physical distance of 265 kb around the centromeric region on chromosome 9. Cloning and functional analysis is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GT, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Akter MB, Kim B, Lee Y, Koh E, Koh H-J (2014) Fine mapping and candidate gene analysis of a new mutant gene for panicle apical abortion in rice. Euphytica 197:387–398

    Article  CAS  Google Scholar 

  • Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S (2009) Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol 50:1886–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Asano K, Ashikari M, Miyao A, Hirochika H, Kitano H, Matsuoka M (2009a) Mapping of the SWORD SHAPE DWARF1 gene, SSD1 in rice. Rice Genet Newsl 23:42–43

    Article  CAS  PubMed  Google Scholar 

  • Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M (2009b) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genomics 281:223–231

    Article  CAS  PubMed  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai X, Luo L, Yan W, Kovi MR, Zhan W, Xing Y (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolactone related shoot branching pathway. Curr Opin Plant Biol 13:34–39

    Article  CAS  PubMed  Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    Article  CAS  PubMed  Google Scholar 

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607

    Article  CAS  PubMed  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu KS, Xiao JH, Yu ZH, Ronald PC, Harrington SE et al (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001) High-resolution pachytene chromosome mapping of bac-artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chin JH, Kim JH, Jiang W, Chu SH, Woo MO, Han L, Brar D, Koh HJ (2007) Identification of subspecies-specific STS markers and their association with segregation distortion in rice (Oryza sativa L.). J Crop Sci Biotechnol 10:175–184

    Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Ann Rev Plant Biol 54:137–164

    Article  CAS  Google Scholar 

  • Gao FM, JiangY Kong DW, Li SG (2005) Genetic control of plant height and its utilization in rice. Mol Plant Breed 3:87–93

    CAS  Google Scholar 

  • Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71:265–276

    Article  CAS  PubMed  Google Scholar 

  • Grennan AK (2006) Gibberellin metabolism enzymes in rice. Plant Physiol 141:524–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hargrove TR, Cabanilla VL (1979) The impact of semidwarf varieties on Asian rice-breeding programs. BioScience 29:731–735

    Article  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell Online 13:999–1010

    Article  CAS  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y et al (2013) DWARF53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nature Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T (1984) List of genetic stocks–dwarfness. Rice Genet Newsl 1:32–33

    Google Scholar 

  • Ko K-W, Lin F, Katsumata T, Sugai Y, Miyazaki S, Kawaide H, Okada K, Nojiri H, Yamane H (2008) Functional identification of a rice ent-kaurene oxidase, OsKO2, using the Pichia pastoris expression system. Biosci Biotechnol Biochem 72(12):3285–3288

    Article  CAS  PubMed  Google Scholar 

  • Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol 46:48–62

    Article  CAS  PubMed  Google Scholar 

  • Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C (2010) Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta 232:1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J et al (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Wu Y, Fu X, Qian Q (2008) Characterizations and molecular mapping of a novel dominant semi-dwarf gene Sdd (t) in rice (Oryza sativa). Plant Breed 127:125–130

    Article  CAS  Google Scholar 

  • Ma LY, Bao JS, Li XM, Zhu XD, Ji ZJ, Xia YW, Yang CD (2009) Progress on cloning and functional analysis of dwarfism related genes in rice. Chin J Rice Sci 23:1–11

    CAS  Google Scholar 

  • Matsukura C, Itoh S, Nemoto K, Tanimoto E, Yamaguchi J (1998) Promotion of leaf sheath growth by gibberellic acid in a dwarf mutant of rice. Planta 205:145–152

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitsunaga S, Tashiro T, Yamaguchi J (1994) Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet 87:705–712

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun T, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F et al (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Piao R, Jiang W, Ham T-H, Choi M-S, Qiao Y, Chu S-H, Park J-H, Woo M-O, Jin Z, An G et al (2009) Map-based cloningof the ERECT PANICLE 3 gene in rice. Theor Appl Genet 119:497–1506

    Article  Google Scholar 

  • Qin R, Qiu Y, Cheng Z, Shan X, Guo X, Zhai H, Wan J (2008) Genetic analysis of a novel dominant rice dwarf mutant 986083D. Euphytica 160:379–387

    Article  CAS  Google Scholar 

  • Richards DE, King KE, Ait-Ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salas-Fernandez MG, Becraft PW, Yin Y, Lubberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461

    Article  CAS  PubMed  Google Scholar 

  • Shao GN, Tang SQ, Luo J, Jiao GA, Wei XJ, Tang A, Wu JL, Zhuang JY, Hu PS (2010) Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. J Genet Genomics 37:523–531

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Jones WT, Harvey D, Edwards PJB, Pascal SM, Kirk C, Considine T, Sheerin DJ, Rakonjac J, Oldfield CJ et al (2010) N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors. J Biol Chem 285:11557–11571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunohara H, Kawai T, Shimizu-Sato S, Sato Y, Sato K, Kitano H (2009) A dominant mutation of TWISTED DWARF1 encoding an α-tubulin protein causes severe dwarfism and right helical growth in rice. Genes Genet Syst 84:209–218

    Article  CAS  PubMed  Google Scholar 

  • Takeda K (1977) Internode elongation and dwarfism in some gramineous plants. Gamma Field Symp 16:1–18

    Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Rieu I, Steber CM (2005) Gibberellin metabolism and signaling. In: Litwack G (ed) Vitamins and hormones, vol 72. Elsevier, London, pp 289–337

    Google Scholar 

  • Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) Dwarf and Low-tillering, a new member of the gras family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816

    Article  CAS  PubMed  Google Scholar 

  • Ubeda-Tomas S, Federici F, Casimiro I, Beemster GTS, Bhalerao R, Swarup R, Doerner P, Haseloff J, Bennett MJ (2009) Gibberellin signaling in the endodermis controls in arabidopsis root meristem size. Curr Biol 19:1194–1199

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci 97:11638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Winkler RG, Helentjaris T (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. Plant Cell 7:1307–1317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu X (2009) Prospects of developing hybrid rice with super high yield. Agron J 101:688–695

    Article  Google Scholar 

  • Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing G, Fu X et al (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from lack of interaction between DELLA and GID1. Plant Physiol 157:2120–2130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202

    Article  CAS  PubMed  Google Scholar 

  • Yuan L (2003) The second generation of hybrid rice in China. In: Sustainable Rice Production for Food Security. Proceedings of the 20th Session of the International Rice Commission, FAO, Rome

  • Zhang BS, Tian F, Tan LB, Xie DX, Sun CQ (2011) Characterization of a novel high-tillering dwarf3 mutant in rice. J Genet Genom 38:411–418

    Article  Google Scholar 

  • Zhu CS, Wang CM, Zhang YM (2007) Modeling segregation distortion for viability selection and Reconstruction of genetic linkage maps with distorted markers. Theor Appl Genet 114:295–305

    Article  PubMed  Google Scholar 

  • Zou J, Chen Z, Zhang S, Zhang W, Jiang G, Zhao X, Zhai W, Pan X, Zhu L (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222:604–612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Next-Generation BioGreen21 Program (PJ01102401), RDA, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jong Koh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, M.B., Piao, R., Reflinur et al. Characterization and mapping of d13, a dwarfing mutant gene, in rice. Genes Genom 37, 893–903 (2015). https://doi.org/10.1007/s13258-015-0319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0319-9

Keywords

Navigation