Skip to main content
Log in

Genome-wide analyses of DNA-binding proteins harboring AT-hook motifs and their functional roles in the rice blast pathogen, Magnaporthe oryzae

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Transcriptional regulation is a complex process mediated by coordinated assembly complexes to ensure temporal and spatial gene expression. The AT-hook is a DNA-binding motif originally described in the high mobility group A of non-histone chromatin components. The AT-hook proteins bind to the minor groove of adenine–thymine (AT) rich regions of DNA and act as transcriptional cofactors coordinating nucleoproteins during transcriptional regulation. In this study, a genome-wide in silico analysis of AT-hook proteins was performed on the ascomycete plant pathogenic fungus, Magnaporthe oryzae. Quantitative real-time RT-PCR analysis revealed differential expression patterns of MoATH genes during development and plant infection. To increase our understanding of the functional role of AT-hook proteins in M. oryzae development and pathogenicity, a deletion mutant of MoATH10 was functionally characterized. Targeted deletion of MoATH10 significantly increased pigmentation and conidiation, indicating that MoATH10 is negatively involved in the regulation of pigmentation and conidiation in M. oryzae. Pathogenicity assays revealed that the ΔMoath10 mutant was less virulent. The reduced disease development of the ΔMoath10 mutant was due to a partial defect in invasive growth inside plant cells, but not appressorium-mediated penetration. These results suggest that MoATH10 is important for growth, development, and virulence in M. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bustin M, Reeves R (1996) High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54:35–100

    Article  CAS  PubMed  Google Scholar 

  • Chi M-H, Park S-Y, Lee Y-H (2009) A quick and safe method for fungal DNA extraction. Plant Pathol J 25:108–111

    Article  CAS  Google Scholar 

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JH, Kim Y, Lee YH (2009) Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus magnaporthe oryzae. J Microbiol Biotechnol 19:11–16

    CAS  PubMed  Google Scholar 

  • Choi J, Cheong K, Jung K, Jeon J, Lee GW, Kang S, Kim S, Lee YW, Lee YH (2013) CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and oomycetes. Nucleic Acids Res 41:D714–D719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung H, Choi J, Park SY, Jeon J, Lee YH (2013) Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus. Fungal Genet Biol 61:133–141

    Article  CAS  PubMed  Google Scholar 

  • Ebbole DJ (2007) Magnaporthe as a model for understanding host–pathogen interactions. Annu Rev Phytopathol 45:437–456

    Article  CAS  PubMed  Google Scholar 

  • Eisen JA, Wu M (2002) Phylogenetic analysis and gene functional predictions: phylogenomics in action. Theor Popul Biol 61:481–487

    Article  PubMed  Google Scholar 

  • Fedorov A, Suboch G, Bujakov M, Fedorova L (1992) Analysis of nonuniformity in intron phase distribution. Nucleic Acids Res 20:2553–2557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18:360–369

    Article  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM, Clore GM (1997) The solution structure of an HMG-I(Y)–DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol 4:657–665

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Lehn DA, Elton TS, Barr PJ, Reeves R (1988) Complete murine cDNA sequence, genomic structure, and tissue expression of the high mobility group protein HMG-I(Y). J Biol Chem 263:18338–18342

    CAS  PubMed  Google Scholar 

  • Kim KS, Lee YH (2012) Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS One 7:e43202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Park S-Y, Kim KS, Rho H-S, Chi M-H, Choi J (2009) Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet 5:e1000757

    Article  PubMed Central  PubMed  Google Scholar 

  • Klosterman SJ, Hadwiger LA (2002) Plant HMG proteins bearing the AT-hook motif. Plant Sci 162:855–866

    Article  CAS  Google Scholar 

  • Kumar R, Reynolds DM, Shevchenko A, Goldstone SD, Dalton S (2000) Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol 10:896–906

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-H, Dean RA (1994) Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett 115:71–75

    Article  Google Scholar 

  • Lee BY, Han SY, Choi HG, Kim JH, Han KH, Han DM (2005) Screening of growth- or development-related genes by using genomic library with inducible promoter in Aspergillus nidulans. J Microbiol 43:523–528

    CAS  PubMed  Google Scholar 

  • Lin H, Zhu W, Silva JC, Gu X, Buell CR (2006) Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:R41

    Article  PubMed Central  PubMed  Google Scholar 

  • Long M, de Souza SJ, Gilbert W (1995) Evolution of the intron-exon structure of eukaryotic genes. Curr Opin Genet Dev 5:774–778

    Article  CAS  PubMed  Google Scholar 

  • Manfioletti G, Giancotti V, Bandiera A, Buratti E, Sautièere P, Cary P, Crane-Robinson C, Coles B, Goodwin GH (1991) cDNA cloning of the HML-C phosphoprotein, a nuclear protein associated with neoplastic and undifferentiated phenotypes. Nucleic Acids Res 19:6793–6797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L et al (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33:D201–D205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68:1348–1365

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Park G, Xu JR (2003) The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Odenbach D, Breth B, Thines E, Weber RW, Anke H, Foster AJ (2007) The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol 64:293–307

    Article  CAS  PubMed  Google Scholar 

  • Ou SH (1985) Rice diseases. Commonwealth Mycological Institute, Kew, pp 97–184

    Google Scholar 

  • Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Park J, Kim S, Kim H et al (2008) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36:D562–D571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park J, Kong S, Kim S, Kang S, Lee YH (2014) Roles of forkhead-box transcription factors in controlling development, pathogenicity, and stress response in Magnaporthe oryzae. Plant Pathol J 30:136–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pramila T, Wu W, Miles S, Noble WS, Breeden LL (2006) The forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 20:2266–2278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramanujam R, Naqvi NI (2010) PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathog 6:e1000897

    Article  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sweigard JA, Chumley FG, Valent B (1992) Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet 232:183–190

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomita M, Shimizu N, Brutlag DL (1996) Introns and reading frames: correlation between splicing sites and their codon positions. Mol Biol Evol 13:1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, Horino O, Kubo Y (2000) Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 38:940–954

    Article  CAS  PubMed  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    Article  CAS  PubMed  Google Scholar 

  • Xu JR, Urban M, Sweigard JA, Hamer JE (1997) The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact 10:187–194

    Article  CAS  Google Scholar 

  • Xue C, Park G, Choi W, Zheng L, Dean RA, Xu JR (2002) Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14:2107–2119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan X, Li Y, Yue X, Wang C, Que Y, Kong D, Ma Z, Tablot N, Wang Z (2011) Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7:e1002385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao Q, Liu K, Zhang Z, Wang Y, Zheng X (2009) MgCRZ1, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett 293:160–169

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Kim Y, Park G, Xu JR (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317–1329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Z, Li G, Lin C, He C (2009) Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol Plant Microbe Interact 22:402–410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant (PJ009791) from the Rural Development Administration, Republic of Korea. We thank Yong-Hwan Lee for helpful discussions.

Conflict of interest

All authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Su Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, JH., Han, JH. & Kim, K.S. Genome-wide analyses of DNA-binding proteins harboring AT-hook motifs and their functional roles in the rice blast pathogen, Magnaporthe oryzae . Genes Genom 36, 871–881 (2014). https://doi.org/10.1007/s13258-014-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0233-6

Keywords

Navigation