Skip to main content
Log in

A study of Drosophila spinster expression and its functions during embryogenesis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

During the development of the Drosophila nervous system, the programmed cell death (PCD) regulates the cell number. The spinster (spin) encodes a multiple transmembrane protein and females showed a strong rejection response against the courting males. Mutation in spin interferes with the PCD of neurons, which subsequently induce the degeneration of adult neural cells. However, this spin functions has not been investigated yet during embryogenesis. In this study we first examined spin expression in detail and its function during embryonic development. Spin was primarily expressed in surface glial cells, including subperineurial glial cells and exit glia, but not in neural cells. In spin loss-of-function mutant embryos, Glial cells increased in number, and neural overgrowth occurred. In spin gain-of-function mutant embryos, PNS was predominantly degenerated at late embryonic stages. These results indicate that spin is involved in neurogenesis via cell death during embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Spin:

Spinster

PCD:

Programmed cell death

LGB:

Longitudinal glioblast

VNC:

Ventral nerve cord

ePG:

Embryonic peripheral glia

UAS:

Upstream activation sequence

ISN:

Intersegmental nerve

SN:

Segmental nerve

CNS:

Central nervous system

PNS:

Peripheral nervous system

References

  • Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117:29–43

    CAS  PubMed  Google Scholar 

  • Barres BA, Raff MC (1999) Axonal control of oligodendrocyte development. J Cell Biol 147:1123–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Booth GE, Kinrade EF, Hidalgo A (2000) Glia maintain follower neuron survival during Drosophila CNS development. Development 127:237–244

    CAS  PubMed  Google Scholar 

  • Brand AH, Perimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Campos AR, Rosen DR, Robinow SN, White K (1987) Molecular analysis of the locus elav in Drosophila melanogaster: a gene whose embryonic expression is neural specific. EMBO J 6:425–431

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1984) The embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin

    Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control point. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  • Dermaut B, Norga KK, Kania A, Verstreken P, Pan H, Zhou Y, Callaerts P, Bellen HJ (2005) Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurogeneration in Drosophila benchwarmer. J Cell Biol 170:127–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ebens AJ, Garren H, Cheyette BN, Zipursky SL (1993) The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 74:15–27

    Article  CAS  PubMed  Google Scholar 

  • Fujita SC, Zipursky SL, Benzer S, Ferrus A, Shotwell SL (1982) Monoclonal antibodies against the Drosophila nervous sysem. Proc Natl Acad Scie USA 79:7929–7933

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halter DA, Urban J, Rickert C, Ner SS, Ito K, Travers AA, Technau GM (1995) The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. Development 121:317–332

    CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells cause neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hosoya T, Takizawa K, Nitta K, Hotta Y (1995) Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Jones BW (2001) Glial cell development in the Drosophila embryo. Bioassay 23:877–887

  • Jones BW (2005) Transcriptional control of glial cell development in Drosophila. Dev Biol 278:265–273

    Article  CAS  PubMed  Google Scholar 

  • Jones BW, Fetter RD, Tear G, Goodman CS (1995) Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Kim SN, Jung KI, Chung HM, Kim SH, Jeon SH (2008) The pleiohomeotic gene is required for maintaining expression of genes functioning in ventral appendage formation in Drosophila melanogaster. Dev Biol 319:121–129

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:80–884

    Article  Google Scholar 

  • Martinez-Vincente M, Cuervo AM (2007) Autophay and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–361

    Article  Google Scholar 

  • Nakano Y, Fujitani K, Kurihara J, Ragan J, Usui-Aoki K, Shimoda L, Lukacsovich T, Suzuki K, Sezaki M, Sano Y, Ueda R, Awano W, Kaneda M, Umeda M, Yamamoto D (2001) Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21:3775–3788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel N (1994) Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. In: Goldstein LSB, Fyrberg EA (eds) Methods in cell biology, vol 44. Academic press, San Diego, pp 576–597

    Google Scholar 

  • Rogulja-Ortmann A, Luer K, Seibert J, Rickert C, Technau GM (2007) Programmed cell death in the embryonic central nervous system of Drosophila melanogester. Development 134:105–116

    Article  CAS  PubMed  Google Scholar 

  • Scherer SS (1997) Molecular genetics of demyelination: new wrinkles on an old membrane. Neuron 18:13–16

    Article  CAS  PubMed  Google Scholar 

  • Sepp KJ, Schulte J, Auld VJ (2001) Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev Biol 238:47–63

    Article  CAS  PubMed  Google Scholar 

  • Siman R, Card JP, Nelson RB, Davis LG (1989) Expression of β-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3:275–285

    Article  CAS  PubMed  Google Scholar 

  • Soustelle L, Giangrande A (2007) Glial differentiation and the Gcm pathway. Neuron Glial Biol 3:5–16

    Google Scholar 

  • Suzuki K, Juni N, Yamamoto D (1997) Enhanced mate refusal in female Drosophila induced by a mutation in the spinster locus. Appl Entomol Zool 32:235–243

    Google Scholar 

  • Sweeney ST, Davis GW (2002) Unrestricted synaptic growth in spinster -a late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron 36:403–416

    Article  CAS  PubMed  Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:45–254

    Article  Google Scholar 

  • Vaux DL, Silke J (2003) Mammalian mitochondrial IAP binding protein. Biochem Biophys Res Commun 304:499–504

    Article  CAS  PubMed  Google Scholar 

  • Xiong WC, Okano H, Patel NH, Blendy JA, Montell C (1994) Repo encodes a glial-specific homeodomain protein required in the Drosophila nervous system. Genes Dev 8:981–994

    Article  CAS  PubMed  Google Scholar 

  • Yuasa Y, Okabe M, Yoshikawa S, Tabuchi K, Xiong WC, Hiromi Y, Okano H (2003) Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors. Development 130:2419–2428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. G.W. Davis for providing spin mutant fly stocks. We also thank Korea Basic Science Institute Chuncheon center for technical assistance in using the confocal and scanning electron microscope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology(700-20100094).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hak Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, KS., Kim, S.H. & Jeon, SH. A study of Drosophila spinster expression and its functions during embryogenesis. Genes Genom 36, 671–682 (2014). https://doi.org/10.1007/s13258-014-0219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0219-4

Keywords

Navigation