Skip to main content
Log in

A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

In this report we present the results of the analysis of approximately 2.7 Mb of genomic information for the American mink (Neovison vison) derived through BAC end sequencing. Our study, which encompasses approximately 1/1000th of the mink genome, suggests that simple sequence repeats (SSRs) are less common in the mink than in the human genome, whereas the average GC content of the mink genome is slightly higher than that of its human counterpart. The 2.7 Mb mink genomic dataset also contained 2,416 repeat elements (retroids and DNA transposons) occupying almost 31% of the sequence space. Among repeat elements, LINEs were over-represented and endogenous viruses (aka LTRs) under-represented in comparison to the human genome. Finally, we present a virtual map of the mink genome constructed with reference to the human and canine genome assemblies using a comparative genomics approach and incorporating over 200 mink BESs with unique hits to the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anistoroaei R, ten Hallers B, Nefedov M, Christensen K, and de Jong P (2011) Construction of an American mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry. BMC Genomics 12: 354.

    Article  PubMed  CAS  Google Scholar 

  • Anistoroaei R, Farid A, Benkel B, Cirera S, and Christensen K (2006) Isolation and characterization of 79 microsatellite markers from the American mink (Mustela vison). Anim. Genet. 37:179–188.

    Article  Google Scholar 

  • Anistoroaei R and Christensen K (2007) Mapping of the silver gene in mink and its association with the dilution gene in dog. Cytogenet. Genome Res. 116:316–318.

    Article  PubMed  CAS  Google Scholar 

  • Anistoroaei R, Menzorov A, Serov O, Farid A, and Christensen K (2007) The first linkage map of the American mink (Mustela vison). Anim. Genet. 38:384–388.

    Article  PubMed  CAS  Google Scholar 

  • Anistoroaei R., Fredholm M, Christensen K, and Leeb T (2008) Albinism in the American mink (Neovison vison) is associated with a tyrosinase nonsense mutation. Anim Genet 39:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Anistoroaei R, Ansari S, Farid A, Benkel B, Karlskov Mortensen P, and Christensen K (2009) An expanded anchored linkage map and virtual mapping for the American mink (Neovison vison) genome based on homology to human and dog. Genomics 94:204–210.

    Article  PubMed  CAS  Google Scholar 

  • Ansari S, Anistoroaei R, Farid A, Christensen K, and Benkel BF (2007) Characterization of microsatellite markers isolated from the American mink (Mustela vison) genome. Scientifur 31:55–58.

    Google Scholar 

  • Benkel BF, Rouvinen-Watt K, Farid A, abd Anistoroaei R (2009) Molecular characterization of the Himalayan mink. Mamm. Genome 20:256–259.

    Article  PubMed  CAS  Google Scholar 

  • Brusgaard K, Shukri N, Malchenko S, Lohi O, Christensen K, and Kruse T (1998) Three polymorphic mink, Mustela vison, dinucleotide repeats. Anim. Genet. 29:153.

    PubMed  CAS  Google Scholar 

  • Carpenter P, Dawson D, Greig C, Parham A, Cheeseman C, and Burke T (2003) Isolation of 39 polymorphic microsatellite loci and the development of a fluorescently labelled marker set for the Eurasian badger (Meles meles) (Carnivora: Mustelidae). Mol. Ecol. Notes 3:610–615.

    Article  CAS  Google Scholar 

  • Chen R, Sodergren E, Weinstock G, and Gibbs R (2004) Dynamic building of a BAC clone tiling path for the rat genome sequencing project. Genome Res. 14: 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Christensen K, Brusgaard K, Malchenko S, Lohi O, and Serov O (1996) Standardization of the American mink (Mustella vison) karyotype and some cosmid in situ hybridization results. Arch. Zootec. 45:259–265.

    Article  Google Scholar 

  • Chung H, Lee K, Choi B, Jang G, Ha J, and Kim T (2007) Identification of microsatellite markers between SW71 and SW1881 on porcine chromosome 6. Anim. Genet. 38:81.

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, and Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175–185.

    CAS  Google Scholar 

  • Farid A, Vincent I, Benkel B, and Christensen K (2004) Isolation of microsatellite markers for American mink (Mustela vison). Scientifur 28:228–233.

    Google Scholar 

  • Frelichowski J, Palmer M, Main D, Tomkins J, Cantrell R, Stelly D, Yu J, Kohel R, and Ulloa M (2006) Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol. Gen. Genomics 275:479–491.

    Article  CAS  Google Scholar 

  • Fur Commission USA (2007) Press release — November 2007, available at: www.furcommission.com/farming/pelts.htm.

  • Groenen M, Cheng H, Bumstead N, Benkel B, Briles W, Burke T, Burt D, Crittenden L, Dodgson J, Hillel J, et al. (2000) A consensus linkage map of the chicken genome. Genome Res. 10:137–147.

    PubMed  CAS  Google Scholar 

  • Graphodatsky A, Yang F, Serdukova N, Perelman P, Zhdanova N, Ferguson-Smith M (2000) Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet. Cell. Genet. 90:275–278.

    Article  PubMed  CAS  Google Scholar 

  • Han Yand Korban S (2008) An overview of the apple genome through BAC end sequence analysis. Plant Mol. Biol. 67:581–588.

    Article  Google Scholar 

  • Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, and Christensen K (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res. 5:5–11.

    Article  PubMed  CAS  Google Scholar 

  • Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, Mizoguchi Y, Hirano T, Itoh T, Watanabe T, Reed K, et al. (2004) A Comprehensive Genetic Map of the Cattle Genome Based on 3802 Microsatellites. Genome Res. 14:1987–1998.

    Article  PubMed  CAS  Google Scholar 

  • Jeon JT, Park EW, Jeon HJ, Kim TH, Lee KT, and Cheong IC (2003) A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Mol. Cells 16:113–116.

    PubMed  CAS  Google Scholar 

  • Klukowska J, Szczerbal I, Wengi-Piasecka A, Switonski M, Schelling C, Gmür A, and Dolf G, (2004) Characterization and mapping of canine microsatellites isolated from BAC clones harbouring DNA sequences homologous to seven human genes. Anim. Genet. 35:404–407.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov S, Matveeva N, Murphy W, O’Brien S, and Serov O (2003) Mapping of 53 loci in American mink (Mustela vison). J. Hered. 94:386–391.

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.

    Article  PubMed  CAS  Google Scholar 

  • Lee M.-K, Ren C, Yan B, Cox B, Zhang H-B, Romanov M, Sizemore F, Suchyta S, E. Peters E, and Dodgson J (2003) Construction and characterization of three complementary BAC libraries for analysis of the chicken genome. Anim. Genet. 34:151–152.

    Article  PubMed  CAS  Google Scholar 

  • Leeb T, Vogl C, Zhu B, de Jong PJ, Binns M, Chowdhary B, Scharfe M, Jarek M, Nordsiek G, Schrader F, and Blöcker H (2006) A human-horse comparative map based on equine BAC end sequences. Genomics 87:772–776.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas 3rd EJ, Zody MC et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819.

    Article  PubMed  CAS  Google Scholar 

  • Maddox J, Davies K, Crawford A, Hulme D, Vaiman D, Cribiu E, Freking B, Beh K, Cockett N, Kang N et al. (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res. 11:1275–1289.

    Article  PubMed  CAS  Google Scholar 

  • Morgulis A, Gertz EM, Schäffer AA, and Agarwala R (2006) A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comp. Biol. 13:1028–1040.

    Article  CAS  Google Scholar 

  • Ness N, Einarson E, Lohi O, and Jorgensen G (1988) Beautiful Fur Animals and Their Coat Colour Genetics. Scientifur, Glostrup, Denmark.

    Google Scholar 

  • O’Connell M, Wright J, and Farid A (1996) Development of PCR primers for nine polymorphic American mink (Mustela vison) microsatellite loci. Mol. Ecol. 5:311–312.

    PubMed  Google Scholar 

  • Pack S, Bedanov V, Sokolova O, Zhdanova N, Matveeva N, and Serov O (1992) Characterization of a new hybrid mink-mouse clone panel: Chromosomal and regional assignments of the GLO, ACE NP, CKBB, ADH2, and MEI loci in mink (Mustela vison). Mamm. Genome 3:112–118.

    Article  PubMed  CAS  Google Scholar 

  • Ren C, Lee MK, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, and Zhang HB (2003) A BAC-based physical map of the chicken genome. Genome Res. 13:2754–2758.

    Article  PubMed  CAS  Google Scholar 

  • Rohrer G, Alexander L, Hu Z, Smith T, Keele J, and Beattie C (1996) A comprehensive map of the porcine genome. Genome Res. 6:371–391.

    Article  PubMed  CAS  Google Scholar 

  • Rubtsov N, Radjabli S, Gradov A, and Serov O (1981) Chinese hamster ×American mink somatic cell hybrids: Characterization of a clone panel and assignment of the mink genes for malate dehydrogenase, NADP-1 and malate dehydrogenase, NAD-1. Theor. Appl. Genet. 60:99–106.

    Article  CAS  Google Scholar 

  • Shackelford R (1948) The nature of coat color differences in mink and foxes. Genetics 33:311–336

    Google Scholar 

  • Shackelford R, (1949) Six mutations affecting coat color in ranch bred mink. Am. Nat. 83:49–86.

    Article  Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, and Keller B (2000) Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA 97:13436–13441.

    Article  PubMed  CAS  Google Scholar 

  • Trapezov O (1997) Black crystal: a novel color mutant in the American mink (Mustela vison Schreber). J. Hered. 88:164–166.

    PubMed  CAS  Google Scholar 

  • Vaiman D, Billault A, Tabet-Aoul K, Schibler L, Vilette D, Oustry-Vaiman A, Soravito C, and Cribiu E (1999) Construction and characterization of a sheep BAC library of three genome equivalents. Mamm. Genome 10:585–587.

    Article  PubMed  CAS  Google Scholar 

  • Vincent I, Farid A, and Otieno C (2003) Variability of thirteen microsatellite markers in American mink (Mustela vison). Can. J. Anim. Sci. 83:597–599.

    Article  CAS  Google Scholar 

  • Wei L, Ying Z, Zhaoliang L, Li G, Xiaobo W, Jing F, Jidong F, Rui Z, Xiaoxiang H, and Ning L (2006) A five-fold pig bacterial artificial chromosome library: a resource for positional cloning and physical mapping. Prog. Nat. Sci. 16:889–892.

    Article  Google Scholar 

  • Weikard R, Goldammer T, Eberlein A, and Kuehn C (2009) Novel tranascripts discovered by mining genomics DNA from defined regions of bovine chromosome 6. BMC Genomics 10:186.

    Article  PubMed  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, and Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 22:4922–4931.

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Xie Z, and Li W (2003) Effects of GC content and mutational pressure on the lengths of exons and coding sequences. J. Mol. Evol. 56:362–370.

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Smith J, Tracey S, Konfortov B, Welzel K, Schalkwyk L, Lehrach H, Kollers S, Masabanda J, Buitkamp J et al. (1999) A 5× genome coverage bovine BAC library: production, characterization, and distribution. Mamm. Genome 10:706–709.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard F. Benkel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkel, B.F., Smith, A., Christensen, K. et al. A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison). Genes Genom 34, 83–91 (2012). https://doi.org/10.1007/s13258-011-0160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-011-0160-8

Keywords

Navigation