Skip to main content
Log in

A Dynamic Individual-Based Model for High-Resolution Ant Interactions

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Ant feeding interactions (i.e., trophallaxis events) are thought to regulate the flow of nutrients and disease within a colony. Consequently, there is great interest in learning which environmental and behavioral factors drive ant trophallaxis. In this paper, we analyze ant trophallaxis behavior in a colony of 73 carpenter ants, observed at 1-s intervals over a period of 4 h. The data represent repeated observations from a dynamic contact network; however, traditional statistical analyses of network models are ill-suited for data observed at such high temporal resolution. We present a model for high-resolution longitudinal network data, where the network is assumed to be a time inhomogeneous, continuous-time Markov chain, with transition rates modeled as a function of time-varying individual and pairwise biological covariates. In particular, the high temporal resolution of the data leads to a tractable likelihood function, and likelihood-based inference procedures are utilized to explain which biological factors drive contact. Our results reveal how differences in ant social castes and individual behaviors, such as ant speed and activity levels, influence patterns of ant trophallaxis in the colony. Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bansal, S., Grenfell, B. T. and Meyers, L. A. (2007), When individual behaviour matters: Homogeneous and network models in epidemiology. Journal of the Royal Society Interface, 4(16), 879–891. ISSN 17425689. https://doi.org/10.1098/rsif.2007.1100.

    Article  Google Scholar 

  • Bartley, M., Hanks, E. and Hughes, D. (2018), A Bayesian penalized hidden Markov model for ant interactions. ArXiv e-prints, June.

  • Billingsley, P. (1995), Probability and Measure. John Wiley and Sons, New York, NY.

    MATH  Google Scholar 

  • Eames, K., Bansal, S., Frost, S. and Riley, S. (2014), Six challenges in measuring contact networks for use in modelling. Epidemics, 10, 72–77. ISSN 18780067. https://doi.org/10.1016/j.epidem.2014.08.006.

    Article  Google Scholar 

  • Farine, D. R., Strandburg-Peshkin, A., Berger-Wolf, T., Ziebart, B., Brugere, I., Li, J. and Crofoot, M. C. (2016), Both nearest neighbours and long-term affiliates predict individual locations during collective movement in wild baboons. Scientific Reports, 6.

  • Ferguson, T. S. (1996), A Course in Large Sample Theory. Routledge, New York.

    Book  Google Scholar 

  • Fewell, J. (2003), Social insect networks. Science, 301(5641), 1867–1870.

    Article  Google Scholar 

  • Gernat, T., Rao, V. D., Middendorf, M., Dankowicz, H., Goldenfeld, N. and Robinson, G. E. (2018), Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks. Proceedings of the National Academy of Sciences, 115(7), 1433–1438.

    Article  Google Scholar 

  • Gordon, D. M. (2014), The ecology of collective behavior. PLoS Biology, 12(3), 1–4. ISSN 15457885. https://doi.org/10.1371/journal.pbio.1001805.

    Article  Google Scholar 

  • Greenwald, E., Segre, E. and Feinerman, O. (2015), Ant trophallactic networks: Simultaneous measurement of interaction patterns and food dissemination. Scientific Reports, 5(July):1–11. ISSN 20452322. https://doi.org/10.1038/srep12496.

  • Greenwald, E., Baltiansky, L. and Feinerman, O. (2018), Individual crop loads provide local control for collective food intake in ant colonies. eLife, 7, 1–22. https://doi.org/10.7554/eLife.31730.

  • Groendyke, C., Welch, D. and Hunter, D. R. (2011), Bayesian inference for contact networks given epidemic data. Scandinavian Journal of Statistics, 38(3), 600–616. ISSN 03036898. https://doi.org/10.1111/j.1467-9469.2010.00721.x.

  • Hamilton, C., Lejeune, B. T. and Rosengaus, R. B. (2011), Trophallaxis and prophylaxis: Social immunity in the carpenter ant Camponotus pennsylvanicus. Biology Letters, 7(1), 89–92. ISSN 1744957X. https://doi.org/10.1098/rsbl.2010.0466.

    Article  Google Scholar 

  • Holland, P. W. and Leinhardt, S. (1977), A dynamic model for social networks. The Journal of Mathematical Sociology, 5(1), 5–20. https://doi.org/10.1080/0022250X.1977.9989862.

    Article  MathSciNet  MATH  Google Scholar 

  • Kays, R., Crofoot, M. C., Jetz, W. and Wikelski, M. (2015), Terrestrial animal tracking as an eye on life and planet. Science, 348(6240). ISSN 0036-8075.

    Article  Google Scholar 

  • Krause, J., Krause, S., Arlinghaus, R., Psorakis, I., Roberts, S. and Rutz, C. (2013), Reality mining of animal social systems. Trends in Ecology and Evolution, 28(9), 541–551. ISSN 0169-5347.

    Article  Google Scholar 

  • Krivitsky, P. N. and Handcock, M. S. (2014), A separable model for dynamic networks. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 76(1), 29–46. ISSN 13697412. https://doi.org/10.1111/rssb.12014.

    Article  MathSciNet  Google Scholar 

  • Leboeuf, A. C., Waridel, P., Brent, C. S., Gonçalves, A. N., Menin, L., Ortiz, D., Riba-Grognuz, O., Koto, A., Soares, Z. G., Privman, E., Miska, E. A., Benton, R. and Keller, L. (2016), Oral transfer of chemical cues, growth proteins and hormones in social insects. eLife, 5.

  • Matias, C. and Miele, V. (2017), Statistical clustering of temporal networks through a dynamic stochastic block model. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4), 1119–1141.

    Article  MathSciNet  Google Scholar 

  • Mersch, D. P., Crespi, A. and Keller, L. (2013), Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science, 340(6136), 1090–1093. https://doi.org/10.1126/science.1234316.

    Article  Google Scholar 

  • Miele, V. and Matias, C. (2017), Revealing the hidden structure of dynamic ecological networks. Royal Society open science, 4(6).

    Article  MathSciNet  Google Scholar 

  • Oster, G. F. and Wilson, E. O. (1978), Caste and ecology in the social insects. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Pinter-Wollman, N., Wollman, R., Guetz, A., Holmes, S. and Gordon, D. M. (2011), The effect of individual variation on the structure and function of interaction networks in harvester ants. Journal of The Royal Society Interface, 8(64), 1562–1573. ISSN 1742-5689. https://doi.org/10.1098/rsif.2011.0059.

    Article  Google Scholar 

  • Pinter-Wollman, N., Bala, A., Merrell, A., Queirolo, J., Stumpe, M. C., Holmes, S. and Gordon, D. M. (2013), Harvester ants use interactions to regulate forager activation and availability. Animal Behaviour, 86(1), 197–207. ISSN 00033472. https://doi.org/10.1016/j.anbehav.2013.05.012.

    Article  Google Scholar 

  • Quevillon, L. E., Hanks, E. M., Bansal, S. and Hughes, D. P. (2015), Social, spatial, and temporal organization in a complex insect society. Scientific Reports, 5, 1–11. ISSN 20452322. https://doi.org/10.1038/srep13393.

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.org/.

  • Russell, J. C., Hanks, E. M., Modlmeier, A. P. and Hughes, D. P. (2017), Modeling collective animal movement through interactions in behavioral states. Journal of Agricultural, Biological, and Environmental Statistics, 22(3), 313–334. ISSN 15372693. https://doi.org/10.1007/s13253-017-0296-3.

    Article  MathSciNet  Google Scholar 

  • Salathe, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W. and Jones, J. H. (2010), A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 107(51), 22020–22025. ISSN 0027-8424. https://doi.org/10.1073/pnas.1009094108.

    Article  Google Scholar 

  • Sendova-Franks, A. B., Hayward, R. K., Wulf, B., Klimek, T., James, R., Planqué, R., Britton, N. F. and Franks, N. R. (2010), Emergency networking: famine relief in ant colonies. Animal Behaviour, 79(2), 473–485. ISSN 00033472. https://doi.org/10.1016/j.anbehav.2009.11.035.

    Article  Google Scholar 

  • Snijders, T. A. B. (1996), Stochastic actor-oriented models for network change. The Journal of Mathematical Sociology, 21(1-2), 149–172.

    Article  Google Scholar 

  • Snijders, T. A. B. (2001), The statistical evaluation of social network dynamics. Sociological Methodology, 31, 361–395.

    Article  Google Scholar 

  • Snijders, T. A. B. (2005), Models for Longitudinal Network Data. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Steglich, C., Snijders, T. A. B. and Pearson, M. (2010), Dynamic networks and behavior: Separating selection from influence. Sociological Methodology, 40(1), 329–393. https://doi.org/10.1111/j.1467-9531.2010.01225.x.

    Article  Google Scholar 

  • Torney, C. J., Lamont, M., Debell, L., Angohiatok, R. J., Leclerc, L.-M. and Berdahl, A. M. (2018), Inferring the rules of social interaction in migrating caribou. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1746). ISSN 0962-8436.

    Article  Google Scholar 

  • Wasserman, S. (1980), Analyzing social networks as stochastic processes. Journal of the American Statistical Association, 75(370), 280–294. ISSN 01621459.

    Article  Google Scholar 

  • Wheeler, W. M. (1918), A study of some ant larvæ , with a consideration of the origin and meaning of the social habit among insects. American Philosophical Society, 57(4), 293–343.

Download references

Acknowledgements

Funding was provided by NSF EEID 1414296 and NIH GM 116927-01. We are grateful to Andreas Modlmeier and the many undergraduates in the Hughes Lab who tracked the ants. We thank Roland Langrock, Christen H. Fleming, and one anonymous reviewer for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan B. Wikle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 265 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wikle, N.B., Hanks, E.M. & Hughes, D.P. A Dynamic Individual-Based Model for High-Resolution Ant Interactions. JABES 24, 589–609 (2019). https://doi.org/10.1007/s13253-019-00363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-019-00363-5

Keywords

Navigation