Skip to main content
Log in

Efficient Sequential Monte Carlo Algorithms for Integrated Population Models

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

In statistical ecology, state-space models are commonly used to represent the biological mechanisms by which population counts—often subdivided according to characteristics such as age group, gender or breeding status—evolve over time. As the counts are only noisily or partially observed, they are typically not sufficiently informative about demographic parameters of interest and must be combined with additional ecological observations within an integrated data analysis. Fitting integrated models can be challenging, especially if the constituent state-space model is nonlinear/non-Gaussian. We first propose an efficient particle Markov chain Monte Carlo algorithm to estimate demographic parameters without a need for linear or Gaussian approximations. We then incorporate this algorithm into a sequential Monte Carlo sampler to perform model comparison. We also exploit the integrated model structure to enhance the efficiency of both algorithms. The methods are demonstrated on two real data sets: little owls and grey herons. For the owls, we find that the data do not support an ecological hypothesis found in the literature. For the herons, our methodology highlights the limitations of existing models which we address through a novel regime-switching model. Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadi, F., Gimenez, O., Arlettaz, R., and Schaub, M. (2010a). An assessment of integrated population models: Bias, accuracy, and violation of the assumption of independence. Ecology, 91(1):7–14.

    Article  Google Scholar 

  • Abadi, F., Gimenez, O., Ullrich, B., Arlettaz, R., and Schaub, M. (2010b). Estimation of immigration rate using integrated population models. Journal of Applied Ecology, 47(2):393–400.

    Article  Google Scholar 

  • Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342. With discussion.

    Article  MathSciNet  MATH  Google Scholar 

  • Bernardo, J. M. and Smith, A. F. M. (2009). Bayesian Theory. Wiley.

  • Besbeas, P., Borysiewicz, R. S., and Morgan, B. J. T. (2009). Completing the Ecological Jigsaw. In Modeling Demographic Processes in Marked Populations, pages 513–539. Springer.

  • Besbeas, P., Freeman, S. N., Morgan, B. J. T., and Catchpole, E. A. (2002). Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics, 58(3):540–547.

  • Besbeas, P. and Morgan, B. J. T. (2012). A threshold model for heron productivity. Journal of Agricultural, Biological, and Environmental Statistics, 17(1):128–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Breed, G., Costa, D., Jonsen, I., Robinson, P., and Mills-Flemming, J. (2012). State-space methods for more completely capturing behavioral dynamics from animal tracks. Ecological Modelling, 235:49–58.

    Article  Google Scholar 

  • Brooks, S. P., King, R., and Morgan, B. J. T. (2004). A Bayesian approach to combining animal abundance and demographic data. Animal Biodiversity and Conservation, 27(1):515–529.

    Google Scholar 

  • Buckland, S. T., Newman, K. B., Fernandez, C., Thomas, L., and Harwood, J. (2007). Embedding population dynamics models in inference. Statistical Science, 22(1):44–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1).

  • Chopin, N. (2002). A sequential particle filter method for static models. Biometrika, 89(3):539–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. (2013). \(\text{ SMC }^{2}\): An efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3):397–426.

    Article  MathSciNet  MATH  Google Scholar 

  • Christen, J. A. and Fox, C. (2005). Markov chain Monte Carlo using an approximation. Journal of Computational and Graphical Statistics, 14(4):795–810.

    Article  MathSciNet  Google Scholar 

  • de Valpine, P., Turek, D., Paciorek, C. J., Anderson-Bergman, C., Lang, D. T., and Bodik, R. (2017). Programming with models: Writing statistical algorithms for general model structures with NIMBLE. Journal of Computational and Graphical Statistics, 26(2):403–413.

    Article  MathSciNet  Google Scholar 

  • Del Moral, P. (1996). Nonlinear filtering: Interacting particle solution. Markov Processes and Related Fields, 2(4):555–580.

    MathSciNet  MATH  Google Scholar 

  • Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B, 68(3):411–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Doucet, A. and Johansen, A. M. (2011). A tutorial on particle filtering and smoothing: Fifteen years later. In Crisan, D. and Rozovskii, B., editors, The Oxford Handbook of Nonlinear Filtering, Oxford Handbooks, chapter 24, pages 656–704. Oxford University Press.

  • Drovandi, C. C. and McCutchan, R. A. (2016). Alive \(\text{ SMC }^{2}\): Bayesian model selection for low-count time series models with intractable likelihoods. Biometrics, 72(2):344–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, J.-C. and Fulop, A. (2015). Density-tempered marginalized sequential Monte Carlo samplers. Journal of Business & Economic Statistics, 33(2):192–202.

    Article  MathSciNet  Google Scholar 

  • Dupuis, J. A. (1995). Bayesian estimation of movement and survival probabilities from capture-recapture data. Biometrika, 82(4):761–772.

    MathSciNet  MATH  Google Scholar 

  • Gilks, W. R., Thomas, A., and Spiegelhalter, D. J. (1994). A language and program for complex Bayesian modelling. Journal of the Royal Statistical Society. Series D (The Statistician) , 43(1):169–177.

    Google Scholar 

  • Golightly, A., Henderson, D. A., and Sherlock, C. (2015). Delayed acceptance particle MCMC for exact inference in stochastic kinetic models. Statistics and Computing, 25(5):1039–1055.

    Article  MathSciNet  MATH  Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1):35–45.

    Article  MathSciNet  Google Scholar 

  • Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430):773–795.

    Article  MathSciNet  MATH  Google Scholar 

  • King, R. (2011). Statistical Ecology. In Brooks, S., Gelman, A., Jones, G., and Meng, X.-L., editors, Handbook of Markov Chain Monte Carlo, chapter 17, pages 410–447. CRC Press.

  • King, R. (2012). A review of Bayesian state-space modelling of capture-recapture-recovery data. Interface Focus, 2:190–204.

    Article  Google Scholar 

  • King, R. (2014). Statistical ecology. Annual Review of Statistics and its Application, 1(1):401–426.

    Article  Google Scholar 

  • King, R., Brooks, S., Mazzetta, C., Freeman, S., and Morgan, B. (2008). Identifying and diagnosing population declines: A Bayesian assessment of lapwings in the UK. Journal of Royal Statistical Society: Series C, 57(5):609–632.

    Article  MathSciNet  Google Scholar 

  • Knape, J. and de Valpine, P. (2012). Fitting complex population models by combining particle filters with Markov chain Monte Carlo. Ecology, 93(2):256–263.

    Article  Google Scholar 

  • Lindley, D. V. (1957). A statistical paradox. Biometrika, 44(1/2):187–192.

    Article  MATH  Google Scholar 

  • McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B. J., and Morales, J. M. (2012). A general discrete-time modeling framework for animal movement using multi-state random walks. Ecological Monographs, 82(3):335–349.

    Article  Google Scholar 

  • McCrea, R. S. and Morgan, B. J. T. (2014). Analysis of Capture-Recapture Data. CRC Press.

  • Millar, R. B. and Meyer, R. (2000). Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling. Journal of the Royal Statistical Society: Series C, 49(3):327–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Morales, J., Haydon, D., Frair, J., Holsiner, K., and Fryxell, J. (2004). Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology, 85(9):2436–2445.

    Article  Google Scholar 

  • Newman, K. B. (1998). State-space modelling of animal movement and mortality with application to salmon. Biometrics, 54:1290–1314.

    Article  MATH  Google Scholar 

  • Newman, K. B., Buckland, S. T., Morgan, B. J. T., King, R., Borchers, D. L., Cole, D., Besbeas, P. T., Gimenez, O., and Thomas, L. (2014). Modelling Population Dynamics: Model Formulation, Fitting and Assessment using State-space Methods. Springer.

  • Nishimura, A., Dunson, D., and Lu, J. (2017). Discontinuous Hamiltonian Monte Carlo for models with discrete parameters and discontinuous likelihoods. ArXiv e-prints arXiv:1705.08510.

  • Parslow, J., Cressie, N., Campbell, E. P., Jones, E., and Murray, L. (2013). Bayesian learning and predictability in a stochastic nonlinear dynamical model. Ecological Applications, 23(4):679–698.

    Article  Google Scholar 

  • Peters, G. W., Hosack, G. R., and Hayes, K. R. (2010). Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC). ArXiv e-prints arXiv:1005.2238.

  • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria.

  • Pooley, C. and Marion, G. (2018). Bayesian model evidence as a practical alternative to deviance information criterion. Royal Society Open Science, 5(3):171519.

    Article  MathSciNet  Google Scholar 

  • Royle, J. A. (2008). Modeling individual effects in the Cormack-Jolly-Seber model: A state-space formulation. Biometrics, 64(2):364–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Schaub, M., Ullrich, B., Knötzsch, G., Albrecht, P., and Meisser, C. (2006). Local population dynamics and the impact of scale and isolation: A study on different little owl populations. Oikos, 115(3):389–400.

    Article  Google Scholar 

  • Sherlock, C., Thiery, A., and Golightly, A. (2015). Efficiency of delayed-acceptance random walk Metropolis algorithms. ArXiv e-prints arXiv:1506.08155.

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):583–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Y., Johansen, A. M., and Aston, J. A. D. (2016). Towards automatic model comparison: An adaptive sequential Monte Carlo approach. Journal of Computational and Graphical Statistics, 25(3):701–726.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by The Alan Turing Institute under the EPSRC Grant EP/N510129/1. AB and AF were funded by a Leverhulme Trust Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Finke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13253_2018_349_MOESM1_ESM.pdf

Web Appendices and Figures, referenced in Sections 3--6, are available at [link to supplementary pdf file goes here]. All data and C++/R code necessary for reproducing the results can be found at https://github.com/AxelFinke/monte-carlo-rcpp. (345KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finke, A., King, R., Beskos, A. et al. Efficient Sequential Monte Carlo Algorithms for Integrated Population Models. JABES 24, 204–224 (2019). https://doi.org/10.1007/s13253-018-00349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-018-00349-9

Keywords

Navigation