Skip to main content

Advertisement

Log in

Analysis of the disc pressure of the upper thoracic spine using pressure-sensitive film: an experimental study in porcine model—implications for scoliosis progression

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

There has been few studies focusing on the disc pressure of the upper thoracic spine and it still lacks the quantitative pressure measurement of each spinal disc segment. The aim of this study was to study the pressure changes of intervertebral disc in porcine upper thoracic spine using pressure-sensitive film. Twelve porcine thoracic motion segments were harvested and successively loaded with vertical loads of 100 N, 150 N, and 200 N during 5° of anterior flexion, 5° of posterior extension and 5° of lateral bending. The resulting pressure values were measured. During anterior flexion, the anterior annulus of all segments at all loads showed higher mean pressure values than those during vertical compression, whereas the posterior annulus did not show higher mean values. During posterior extension, the anterior annulus of all segments showed lower mean pressure values than those during vertical compression, whereas the posterior annulus did not show lower mean pressure values. During lateral bending, the annulus of all segments showed higher mean pressure values than those during vertical compression. The posterior thoracic vertebra plays an important role in the motion of the upper thoracic vertebral segment and pressure distribution. During lateral bending, the concave side pressure of the annulus increases obviously, suggesting that asymmetrical force is a contributory factor for scoliosis progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shakil H, Iqbal ZA, Al-Ghadir AH (2014) Scoliosis: review of types of curves, etiological theories and conservative treatment. J Back Musculoskelet Rehabil 27:111–115

    Article  Google Scholar 

  2. Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg (Am Vol) 82:1157–1168

    Article  CAS  Google Scholar 

  3. Gorman KF, Julien C, Moreau A (2012) The genetic epidemiology of idiopathic scoliosis. Eur Spine J 21:1905–1919

    Article  Google Scholar 

  4. de Seze M, Cugy E (2012) Pathogenesis of idiopathic scoliosis: a review. Ann Phys Rehabil Med 55:128–138

    Article  Google Scholar 

  5. Perdriolle R, Becchetti S, Vidal J, Lopez P (1993) Mechanical process and growth cartilages. Essential factors in the progression of scoliosis. Spine (Phila Pa 1976) 18:343–349

    Article  CAS  Google Scholar 

  6. Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa) 29:2724–2732

    Article  Google Scholar 

  7. Neidlinger-Wilke C, Galbusera F, Pratsinis H, Mavrogonatou E, Mietsch A, Kletsas D, Wilke HJ (2014) Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level. Eur Spine J 23(Suppl 3):S333–S343

    Article  Google Scholar 

  8. Edwards WT, Ordway NR, Zheng Y, McCullen G, Han Z, Yuan HA (2001) Peak stresses observed in the posterior lateral anulus. Spine (Phila Pa 1976) 26:1753–1759

    Article  CAS  Google Scholar 

  9. McMillan DW, McNally DS, Garbutt G, Adams MA (1996) Stress distributions inside intervertebral discs: the validity of experimental "stress profilometry'. Proc Inst Mech Eng 210:81–87

    Article  CAS  Google Scholar 

  10. Nachemson AL, Disc pressure measurements. Spine (Phila Pa 1976) 1981; 6:93–107.

    Article  CAS  Google Scholar 

  11. Gay RE, Zhao KD, Ilharreborde B, Bridges J, An K-N (2006) The reliability of intradiscal stress profilometry in cadaveric lumbar discs. J Musculoskelet Res 10:163–171

    Article  Google Scholar 

  12. Xu G, Fu X, Du C, Ma J, Li Z, Tian P, Zhang T, Ma X (2014) Biomechanical comparison of mono-segment transpedicular fixation with short-segment fixation for treatment of thoracolumbar fractures: a finite element analysis. Proc Inst Mech Eng 228:1005–1013

    Article  Google Scholar 

  13. Germaneau A, Saget M, Vendeuvre T, Doumalin P, Dupre JC, Bremand F, Hesser F, Maxy P, Rigoard P (2014) Biomechanical analysis of spinal instrumentation systems dedicated to stabilise thoracolumbar fractures: comparison between standard open surgical instrumentation and percutaneous techniques. Comput Methods Biomech Biomed Eng 17(Suppl 1):72–73

    Article  Google Scholar 

  14. O'Connell GD, Jacobs NT, Sen S, Vresilovic EJ, Elliott DM (2011) Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J Mech Behav Biomed Mater 4:933–942

    Article  Google Scholar 

  15. Panagiotacopulos ND, Pope MH, Bloch R, Krag MH (1987) Water content in human intervertebral discs. Part II. Viscoelastic behavior. Spine (Phila Pa 1976) 12:918–924

    Article  CAS  Google Scholar 

  16. Jiang Y, Sun X, Peng X, Zhao J, Zhang K (2017) Effect of sacral slope on the biomechanical behavior of the low lumbar spine. Exp Ther Med 13:2203–2210

    Article  Google Scholar 

  17. Anderson DE, Mannen EM, Tromp R, Wong BM, Sis HL, Cadel ES, Friis EA, Bouxsein ML (2018) The rib cage reduces intervertebral disc pressures in cadaveric thoracic spines by sharing loading under applied dynamic moments. J Biomech 70:262–266

    Article  Google Scholar 

  18. Zhang H, Hu X, Wang Y, Yin X, Tang M, Guo C, Liu S, Wang Y, Deng A, Liu J, Wu J (2013) Use of finite element analysis of a Lenke type 5 adolescent idiopathic scoliosis case to assess possible surgical outcomes. Comput Aided Surg 18:84–92

    Article  CAS  Google Scholar 

  19. Rohlmann A, Zander T, Burra NK, Bergmann G (2008) Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom. Eur Spine J 17:217–223

    Article  CAS  Google Scholar 

  20. Lafage V, Dubousset J, Lavaste F, Skalli W (2004) 3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg 9:17–25

    Article  CAS  Google Scholar 

  21. Carrier J, Aubin CE, Villemure I, Labelle H (2004) Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput 42:541–548

    Article  CAS  Google Scholar 

  22. Rohlmann A, Richter M, Zander T, Klockner C, Bergmann G (2006) Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J 15:457–464

    Article  Google Scholar 

  23. Healy AT, Lubelski D, Mageswaran P, Bhowmick DA, Bartsch AJ, Benzel EC, Mroz TE (2014) Biomechanical analysis of the upper thoracic spine after decompressive procedures. Spine J 14:1010–1016

    Article  Google Scholar 

  24. Little AS, Brasiliense LB, Lazaro BC, Reyes PM, Dickman CA, Crawford NR (2010) Biomechanical comparison of costotransverse process screw fixation and pedicle screw fixation of the upper thoracic spine. Neurosurgery 66:178–182, (discussion 182)

    PubMed  Google Scholar 

  25. Adams MA, McNally DS, Dolan P (1996) 'Stress' distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972

    Article  CAS  Google Scholar 

  26. Yildiz KI, Isik C, Tecimel O, Cay N, Firat A, Akmese R, Bozkurt M (2013) Use of contact pressure-sensitive surfaces as an indicator of graft tension in medial patellofemoral ligament reconstruction. Arch Orthop Trauma Surg 133:1657–1663

    Article  Google Scholar 

  27. Yao QQ, Zheng SN, Cheng L, Yuan P, Zhang DS, Liao XW, Xu Y, Wang LM (2010) Effects of a new shape-memory alloy interspinous process device on pressure distribution of the intervertebral disc and zygapophyseal joints in vitro. Orthopaedic Surg 2:38–45

    Article  Google Scholar 

  28. Kim S, Carl Miller M (2016) Validation of a finite element humeroradial joint model of contact pressure using fuji pressure sensitive film. J Biomech Eng 138(1):014501

    Article  Google Scholar 

  29. Petersen SA, Bernard JA, Langdale ER, Belkoff SM (2016) Autologous distal clavicle versus autologous coracoid bone grafts for restoration of anterior-inferior glenoid bone loss: a biomechanical comparison. J Shoulder Elbow Surg 25:960–966

    Article  Google Scholar 

  30. Cil A, Yazici M, Daglioglu K, Aydingoz U, Alanay A, Acaroglu RE, Gulsen M, Surat A (2005) The effect of pedicle screw placement with or without application of compression across the neurocentral cartilage on the morphology of the spinal canal and pedicle in immature pigs. Spine (Phila Pa 1976) 30:1287–1293

    Article  Google Scholar 

  31. Zhang H, Sucato DJ (2008) Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J Bone Joint Surg (Am Vol) 90:2460–2469

    Article  Google Scholar 

  32. Yazici M, Pekmezci M, Cil A, Alanay A, Acaroglu E, Oner FC (2006) The effect of pedicle expansion on pedicle morphology and biomechanical stability in the immature porcine spine. Spine (Phila Pa 1976) 31:E826–E829

    Article  Google Scholar 

  33. Zhang Z-M, Su F, Zhang C-L, Ma P-P, Zhang Y, Zhang X-P (2013) The effect of different lumbar segmental fixation on lumbar activity and intervertebral pressure. Chongqing Yi Xue 42:3403–3404

    Google Scholar 

  34. McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP (1983) The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg (Am Vol) 65:461–473

    Article  CAS  Google Scholar 

  35. Adams MA, May S, Freeman BJ, Morrison HP, Dolan P (2000) Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine (Phila Pa 1976) 25:431–437

    Article  CAS  Google Scholar 

  36. Steffen T, Baramki HG, Rubin R, Antoniou J, Aebi M (1998) Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading. Clinical Biomech (Bristol, Avon) 13:495–505

    Article  Google Scholar 

  37. Mente PL, Stokes IA, Spence H, Aronsson DD (1997) Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine (Phila Pa 1976) 22:1292–1296

    Article  CAS  Google Scholar 

  38. Stokes IA, Aronsson DD (2001) Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord 14:317–322

    Article  CAS  Google Scholar 

  39. Stokes IA, Spence H, Aronsson DD, Kilmer N (1996) Mechanical modulation of vertebral body growth Implications for scoliosis progression. Spine (Phila Pa 1976) 21:1162–1167

    Article  CAS  Google Scholar 

  40. Mente PL, Aronsson DD, Stokes IA, Iatridis JC (1999) Mechanical modulation of growth for the correction of vertebral wedge deformities. J Orthop Res 17:518–524

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Changlin Han for providing experiment site and biomechanical test machine.

Funding

The study was approved by the Key Project of Medical Scientific Research of Hebei Province (No. 20180611) and Key Research and Development Plan of Hebei Province (No. 18277745D). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experimental tests on animals were in compliance with the requirements of the Ethics Committee of the Children's Hospital of Hebei Province.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Wang, C., Guo, X. et al. Analysis of the disc pressure of the upper thoracic spine using pressure-sensitive film: an experimental study in porcine model—implications for scoliosis progression. Australas Phys Eng Sci Med 42, 1069–1079 (2019). https://doi.org/10.1007/s13246-019-00804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00804-y

Keywords

Navigation