Skip to main content
Log in

A method to enhance 2D ion chamber array patient specific quality assurance for IMRT

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Gamma index comparison has been established as a method for patient specific quality assurance in IMRT. Detector arrays can replace radiographic film systems to record 2D dose distributions and fulfill quality assurance requirements. These electronic devices present spatial resolution disadvantages with respect to films. This handicap can be partially overcome with a multiple acquisition sequence of adjacent 2D dose distributions. The detector spatial response influence can also be taken into account through the convolution of the calculated dose with the detector spatial response. A methodology that employs both approaches could allow for enhancements of the quality assurance procedure. 35 beams from different step and shoot IMRT plans were delivered on a phantom. 2D dose distributions were recorded with a PTW-729 ion chamber array for individual beams, following the multiple acquisition methodology. 2D dose distributions were also recorded on radiographic films. Measured dose distributions with films and with the PTW-729 array were processed with the software RITv5.2 for Gamma index comparison with calculated doses. Calculated dose was also convolved with the ion chamber 2D response and the Gamma index comparisons with the 2D dose distribution measured with the PTW-729 array was repeated. 3.7 ± 2.7% of points surpassed the accepted Gamma index when using radiographic films compared with calculated dose, with a minimum of 0.67 and a maximum of 13.27. With the PTW-729 multiple acquisition methodology compared with calculated dose, 4.1 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 1.44 and a maximum of 11.26. With the PTW- multiple acquisition methodology compared with convolved calculated dose, 2.7 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 0.42 and a maximum of 5.75. The results obtained in this work suggest that the comparison of merged adjacent dose distributions with convolved calculated dose represents an enhancement in the methodology for IMRT patient specific quality assurance with the PTW-729 ion chamber array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gregoire V, Mackie TR, De Neve W, Gospodarowicz M, Purdy JA, van Herk M, Niemierko A (2010) ICRU report 83. Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 10:1–106

    Google Scholar 

  2. Mijnheer B, Georg D (2008) ESTRO booklet no. 9: guidelines for the verification of IMRT, 1st edn. ESTRO, Brussels

    Google Scholar 

  3. Hartford AC, Palisca MG, Eichler TJ, Beyer DC, Devineni VR, Ibbott GS, Kavanagh B, Kent JS, Rosenthal SA, Schultz CJ, Tripuraneni P, Gaspar LE (2009) American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guidelines for intensity-modulated radiation therapy (IMRT). Int J Radiat Oncol Biol Phys 73:9–14

    Article  PubMed  Google Scholar 

  4. Ezzell GA et al (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36(11):5359–5373

    Article  PubMed  Google Scholar 

  5. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661

    Article  CAS  PubMed  Google Scholar 

  6. Depuydt T, Van Esch A, Huyskens DP (2002) A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation. Radiother Oncol 62:309–319

    Article  PubMed  Google Scholar 

  7. Wiezorek T, Banz N, Schwedas M (2005) Dosimetric quality assurance for intensity-modulated radiotherapy feasibility study for a filmless approach. Strahlentherapy Onkology 181:468–474

    Article  Google Scholar 

  8. Spezi E, Angelini AL, Romani F, Ferri A (2005) Characterization of a 2D ion chamber array for the verification of radiotherapy treatments. Phys Med Biol 50:3361–3373

    Article  CAS  PubMed  Google Scholar 

  9. Van Esch A, Clermont C, Devillers M, Iori M, Huyskens DP (2007) On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys 34:3825–3837

    Article  PubMed  Google Scholar 

  10. Herzen J, Torovic M, Cremers F, Platz V, Albers D, Bartels A, Schmidt R (2007) Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine. Phys Med Biol 52:1197–1208

    Article  CAS  PubMed  Google Scholar 

  11. Saminathan SA, Manickan R, Chandraraj V, Supe SS (2010) Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification. J Appl Clin Med Phys 11(2):3076

    Article  PubMed  Google Scholar 

  12. Spezi E, Angelini AL, Ferri A (2006) A multiple acquisition sequence for IMRT verification with a 2D ion chamber array. Med Dosim 31:269–272

    Article  PubMed  Google Scholar 

  13. Poppe B et al (2006) Two-dimensional ionization chamber arrays for IMRT plan verification. Med Phys 33:1005–1015

    Article  PubMed  Google Scholar 

  14. Gago-Arias A, Brualla-González L, González-Castaño DM, Gómez F, García MS, Vega VL, Mosquera Sueiro J, Pardo-Montero J (2012) Evaluation of chamber response function influence on IMRT verification using 2D commercial detector arrays. Phys Med Biol 57(7):2005–2020

    Article  CAS  PubMed  Google Scholar 

  15. Poppe B et al (2007) Spatial resolution of 2D ionization chamber arrays for IMRT dose verification: single-detector size and sampling step width. Phys Med Biol 52(10):2921–2935

    Article  PubMed  Google Scholar 

  16. Vieillevigne L et al (2015) Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors. Phys Med 31(7):720–725

    Article  PubMed  Google Scholar 

  17. Hussein M et al (2013) A comparison of the Gamma index analysis in various commercial IMRT/VMAT QA systems. Radiother Oncol 109(3):370–376

    Article  PubMed  Google Scholar 

  18. Hussein M et al (2013) A critical evaluation of the PTW 2D-ARRAY seven29 and OCTAVIUS II phantom for IMRT and VMAT verification. J Appl Clin Med Phys 14(6):4460

    Article  PubMed  Google Scholar 

  19. Chandraraj V (2011) Comparison of four commercial devices for RapidArc and sliding window IMRT QA. J Appl Clin Med Phys 12(2):3367

    Article  PubMed  Google Scholar 

  20. Stelljes TS et al (2015) Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS detector 1500. Med Phys 42:1528

    Article  CAS  PubMed  Google Scholar 

  21. Asuni G et al (2012) Investigation of the spatial resolution of an online dose verification device. Med Phys 39(2):697–705

    Article  CAS  PubMed  Google Scholar 

  22. Alashrah S, El-Taher A (2015) Intensity modulated radiation therapy plans verification using a Gaussian convolution kernel to correct the single chamber response function of the I’mRT MatriXX array. J Appl Sci 15(3):483

    Article  Google Scholar 

  23. Pai S, Das IJ, Dempsey JF, Lam KL, LoSasso TJ, Olch AJ, Palta JR, Reinstein LE, Ritt D, Wilcoxl EE (2007) TG-69: radiographic film for megavoltage beam dosimetry. Med Phys 34:2228–2258

    Article  CAS  PubMed  Google Scholar 

  24. Bouchard H et al (2015) Detector dose response in megavoltaje small photon beams. I. Theoretical concepts. Med Phys 42(10):6033–6047

    Article  CAS  PubMed  Google Scholar 

  25. Niroomand-Rad A et al (1998) Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. Med Phys 25(11):2093–2115

    Article  CAS  PubMed  Google Scholar 

  26. Nelms B et al (2011) Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys 38(2):1037–1044

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stasi M et al (2012) Pretreatment patient-specific IMRT quality assurance: a correlation study between Gamma index and patient clinical dose volume histogram. Med Phys 39:7626

    Article  CAS  PubMed  Google Scholar 

  28. Heilemann G (2013) On the sensitivity of common Gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med Phys 40(3):031702

    Article  CAS  PubMed  Google Scholar 

  29. Cozzolino M et al (2014) Clinically relevant quality assurance (QA) for prostate RapidArc plans: gamma maps and DVH-based evaluation. Phys Med 30(4):462–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Silvia Zunino, PhD, for her priceless help and encouragement to conduct this research. Rogelio Manuel Diaz Moreno gratefully acknowledges the support of the Instituto Nacional de Oncología y Radiobiología, Instituto de Neurologia y Neurocirugía, Cuba, Instituto de Radioterapia-Fundación Marie Curie, Argentina, and Elekta Oncology Systems. Part of this work was carried out under the framework of a co-ordinated research project E.2.40.15 with the International Atomic Energy Agency (IAEA, Vienna). All authors would like to thank the IAEA for the support provided to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogelio Manuel Diaz Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz Moreno, R.M., Venencia, D., Garrigo, E. et al. A method to enhance 2D ion chamber array patient specific quality assurance for IMRT. Australas Phys Eng Sci Med 40, 145–151 (2017). https://doi.org/10.1007/s13246-016-0498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0498-y

Keywords

Navigation