Skip to main content
Log in

An adaptive technique for multiscale approximate entropy (MAEbin) threshold (r) selection: application to heart rate variability (HRV) and systolic blood pressure variability (SBPV) under postural stress

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Multiscale approximate entropy (MAE) is used to quantify the complexity of a time series as a function of time scale τ. Approximate entropy (ApEn) tolerance threshold selection ‘r’ is based on either: (1) arbitrary selection in the recommended range (0.1–0.25) times standard deviation of time series (2) or finding maximum ApEn (ApEnmax) i.e., the point where self-matches start to prevail over other matches and choosing the corresponding ‘r’ (rmax) as threshold (3) or computing rchon by empirically finding the relation between rmax, SD1/SD2 ratio and N using curve fitting, where, SD1 and SD2 are short-term and long-term variability of a time series respectively. None of these methods is gold standard for selection of ‘r’. In our previous study [1], an adaptive procedure for selection of ‘r’ is proposed for approximate entropy (ApEn). In this paper, this is extended to multiple time scales using MAEbin and multiscale cross-MAEbin (XMAEbin). We applied this to simulations i.e. 50 realizations (n = 50) of random number series, fractional Brownian motion (fBm) and MIX (P) [1] series of data length of N = 300 and short term recordings of HRV and SBPV performed under postural stress from supine to standing. MAEbin and XMAEbin analysis was performed on laboratory recorded data of 50 healthy young subjects experiencing postural stress from supine to upright. The study showed that (i) ApEnbin of HRV is more than SBPV in supine position but is lower than SBPV in upright position (ii) ApEnbin of HRV decreases from supine i.e. 1.7324 ± 0.112 (mean ± SD) to upright 1.4916 ± 0.108 due to vagal inhibition (iii) ApEnbin of SBPV increases from supine i.e. 1.5535 ± 0.098 to upright i.e. 1.6241 ± 0.101 due sympathetic activation (iv) individual and cross complexities of RRi and systolic blood pressure (SBP) series depend on time scale under consideration (v) XMAEbin calculated using ApEnmax is correlated with cross-MAE calculated using ApEn (0.1–0.26) in steps of 0.02 at each time scale in supine and upright position and is concluded that ApEn0.26 has highest correlation at most scales (vi) choice of ‘r’ is critical in interpreting interactions between RRi and SBP and in ascertaining true complexity of the individual RRi and SBP series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh A, Saini BS, Singh D (2015) An alternative approach to approximate entropy threshold value (r) selection: application to heart rate variability and systolic blood pressure variability under postural challenge. Med Biol Eng Comput. doi:10.1007/s11517-015-1362-z

    PubMed  Google Scholar 

  2. Vakorin VA, Mišic B, Krakovska O, McIntosh AR (2011) Empirical and theoretical aspects of generation and transfer of information in a neuromagnetic source network. Front Syst Neurosci. doi:10.3389/fnsys.2011.00096

    Google Scholar 

  3. Valencia FJ, Porta A, Vallverdú M, Claria F, Baranowski R, Baranowska EO, Caminal P (2009) Refined multiscale entropy: application to 24 h holter recordings of heart period variability in healthy and aortic stenosis subjects. IEEE Trans Biomed Eng 56(9):2202–2213

    Article  PubMed  Google Scholar 

  4. Singh A, Saini BS, Singh D (2015)“Multiscale joint symbolic transfer entropy for quantification of causal interactions between heart rate and blood pressure variability under postural stress,” Fluct Noise Lett, vol. 14, no. 3, pp. 1550031-1-15

  5. Boettger S, Hoyer D, Falkenhahn K, Kaatz M, Yeragani VK, Bär KJ (2006) Altered diurnal autonomic variation and reduced vagal information flow in acute schizophrenia. Clin Neurophysiol 117(12):2715–2722

    Article  PubMed  Google Scholar 

  6. Javorka M, Trunkvalterova Z, Tonhajzerova I, Javorkova J, Javorka K, Baumert M (2008) Short-term heart rate complexity is reduced in patients with type 1 diabetes mellitus. Clin Neurophysiol 119:1071–1081

    Article  PubMed  Google Scholar 

  7. Cerutti S, Hoyer D, Voss A (2009) Multiscale, multiorgan and multivariate complexity analyses of cardiovascular regulation. Philos Trans Royal Soc London A 367(1892):1337–1358

    Article  Google Scholar 

  8. Castiglioni P, Parati G, Rienzo MD, Carabalona R, Cividjian A, Quintin L (2011) Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J Physiol 589(2):355–369

    Article  CAS  PubMed  Google Scholar 

  9. Tulppo MP, Mäkikallio TH, Seppänen T, Shoemaker K, Tutungi E, Hughson RL, Huikuri HV (2001) Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin Physiol 21:515–523

    Article  CAS  PubMed  Google Scholar 

  10. Porta A, Castiglioni P, Di Rienzo M, Bari V, Bassani T, Marchi A, Takahashi ACM, Tobaldini E, Montano N, Catai AM, Barbic F, Furlan R, Cividjian A, Quintin L (2012) Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information. J Appl Physiol 113(12):1810–1820

    Article  CAS  PubMed  Google Scholar 

  11. Porta A, Ruscone TG, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103(4):1143–1149

    Article  PubMed  Google Scholar 

  12. Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N, Ruscone TG (2007) Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol 293(1):H702–H708

    Article  CAS  PubMed  Google Scholar 

  13. Porta A, Tobaldini E, Ruscone TG, Montano N (2010) RT variability unrelated to heart period and respiration progressively increases during graded head-up tilt. Am J Physiol Heart Circ Physiol 298(5):H1406–H1414

    Article  CAS  PubMed  Google Scholar 

  14. Baumert M, Wessel N, Schirdewan A, Voss A, Abbott D (2007) Scaling characteristics of heart rate time series before the onset of ventricular tachycardia. Ann Biomed Eng 35(2):201–207

    Article  PubMed  Google Scholar 

  15. Costa M, Goldberger AL, Peng CK (2005)“Multiscale entropy analysis of biological signals,” Phys Rev E, vol. 71, no. 2, pp. 021906-1-021906-18

  16. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89(6):068102–068111

    Article  PubMed  Google Scholar 

  17. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    CAS  PubMed  Google Scholar 

  18. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7(4):335–345

    Article  CAS  PubMed  Google Scholar 

  19. Chon KH, Scully C, Lu S (2009) Approximate entropy for all signals. IEEE Eng Med Biol Mag 28(6):18–23

    Article  PubMed  Google Scholar 

  20. Singh B, Singh D (2012) Effect of threshold value r on multiscale entropy based heart rate variability. Cardiovas Eng Technol 3(2):211–216

    Article  Google Scholar 

  21. Pincus SM, Viscarello RR (1992) Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet Gynecol 79(2):249–255

    CAS  PubMed  Google Scholar 

  22. Fleisher LA, Pincus SM, Rosenbaum SH (1993) Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction. Anesthesiology 78(4):683–692

    Article  CAS  PubMed  Google Scholar 

  23. Lu S, Zhao H, Ju K, Shin K, Lee M, Shelley K, Chon KH (2008) Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information. J Clin Monit Comput 22(1):23–29

    Article  PubMed  Google Scholar 

  24. Singh B (2015) Multiscale analysis of cardiovascular variability. Asian J Sci Technol 6(5):1455–1457

    Google Scholar 

  25. Lu S, Chen X, Kanters JK, Solomon IC, Chon KH (2008) Automatic selection of the threshold value for approximate entropy. IEEE Trans Biomed Eng 55(8):1966–1972

    Article  PubMed  Google Scholar 

  26. Singh A, Saini BS, Singh D (2016) A new baroreflex sensitivity index based on improved Hilbert–Huang transform for assessment of baroreflex in supine and standing postures. Biocybern Biomed Eng 36(2):355–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amritpal Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Saini, B.S. & Singh, D. An adaptive technique for multiscale approximate entropy (MAEbin) threshold (r) selection: application to heart rate variability (HRV) and systolic blood pressure variability (SBPV) under postural stress. Australas Phys Eng Sci Med 39, 557–569 (2016). https://doi.org/10.1007/s13246-016-0432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0432-3

Keywords

Navigation