Skip to main content
Log in

Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: a feasibility study

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Alanine dosimeters in the form of pure alanine powder in PMMA plastic tubes were investigated for dosimetry in a clinical application. Electron paramagnetic resonance (EPR) spectroscopy was used to measure absorbed radiation doses by detection of signals from radicals generated in irradiated alanine. The measurements were performed for low-dose ranges typical for single-fraction doses often used in external photon beam radiotherapy. First, the dosimeters were irradiated in a solid water phantom to establish calibration curves in the dose range from 0.3 to 3 Gy for 6 and 18 MV X-ray beams from a clinical linear accelerator. Next, the dosimeters were placed at various locations in an anthropomorphic pelvic phantom to measure the dose delivery of a conventional four-field box technique treatment plan to the pelvis. Finally, the doses measured with alanine dosimeters were compared against the doses calculated with a commercial treatment planning system (TPS). The results showed that the alanine dosimeters have a highly sensitive dose response with good linearity and no energy dependence in the dose range and photon beams used in this work. Also, a fairly good agreement was found between the in-phantom dose measurements with alanine dosimeters and the TPS dose calculations. The mean value of the ratios of measured to calculated dose values was found to be near unity. The measured points in the in-field region passed dose-difference acceptance criterion of 3 % and those in the penumbral region passed distance-to-agreement acceptance criterion of 3 mm. These findings suggest that the pure alanine powder in PMMA tube dosimeter is a suitable option for dosimetry of radiotherapy photon beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sagstuen E, Hole EO (2009) Radiation produced radicals. In: Brustolon M, Giamello E (eds) Electron paramagnetic resonance: a practitioner’s toolkit. Wiley, Hoboken, pp 325–382

    Chapter  Google Scholar 

  2. Waldeland E, Hole EO, Sagstuen E, Malinen E (2010) The energy dependence of lithium formate and alanine EPR dosimeters for medium energy X-rays. Med Phys 37(7):3569–3576. doi:10.1118/1.3432567

    Article  CAS  PubMed  Google Scholar 

  3. Sharpe PHG, Sephton JP (1999) Alanine dosimetry at NPL: the development of a mailed reference dosimetry service at radiotherapy dose levels. In: IAEA-TECDOC-1070. Techniques for high dose dosimetry in industry, agriculture and medicine, International Atomic Energy Agency, Vienna, pp 183–189. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/019/30019778.pdf

  4. Gago-Arias A, Rodriguez-Romero R, Sanchez-Rubio P, Gonzalez-Castano DM, Gomez F, Nunez L, Palmans H, Sharpe P, Pardo-Montero J (2012) Correction factors for A1SL ionization chamber dosimetry in tomotherapy: machine-specific, plan-class, and clinical fields. Med Phys 39(4):1964–1970. doi:10.1118/1.3692181

    Article  CAS  PubMed  Google Scholar 

  5. Hornbeck A, Garcia T, Cuttat M, Jenny C (2014) Absolute calibration of the gamma knife Perfexion and delivered dose verification using EPR/alanine dosimetry. Med Phys 41(6):061708. doi:10.1118/1.4873686

    Article  PubMed  Google Scholar 

  6. Gago-Arias A, Antolin E, Fayos-Ferrer F, Simon R, Gonzalez-Castano DM, Palmans H, Sharpe P, Gomez F, Pardo-Montero J (2013) Correction factors for ionization chamber dosimetry in cyberknife: machine-specific, plan-class, and clinical fields. Med Phys 40(1):011721. doi:10.1118/1.4773047

    Article  PubMed  Google Scholar 

  7. Schultka K, Ciesielski B, Serkies K, Sawicki T, Tarnawska Z, Jassem J (2006) EPR/alanine dosimetry in LDR brachytherapy—a feasibility study. Radiat Prot Dosim 120(1–4):171–175. doi:10.1093/rpd/nci528

    Article  CAS  Google Scholar 

  8. Azangwe G, Grochowska P, Georg D, Izewska J, Hopfgartner J, Lechner W, Andersen CE, Beierholm AR, Helt-Hansen J, Mizuno H, Fukumura A, Yajlma K, Gouldstone C, Sharpe P, Meghzifene A, Palmans H (2014) Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys 41(7):072103. doi:10.1118/1.4883795

    Article  PubMed  Google Scholar 

  9. Wagner D, Anton M, Vorwerk H (2011) Dose uncertainty in radiotherapy of patients with head and neck cancer measured by in vivo ESR/alanine dosimetry using a mouthpiece. Phys Med Biol 56(5):1373–1383. doi:10.1088/0031-9155/56/5/010

    Article  PubMed  Google Scholar 

  10. De Angelis C, Mattacchioni A, Onori S, Aragno D, de Paula U, Panichelli V (2000) Electron arc therapy treatment planning verification with alanine/EPR dosimetry. Appl Radiat Isot 52(5):1203–1207. doi:10.1016/S0969-8043(00)00072-5

    Article  CAS  PubMed  Google Scholar 

  11. Schaeken B, Lelie S, Meijnders P, Van den Weyngaert D, Janssens H, Verellen D (2010) Alanine/EPR dosimetry applied to the verification of a total body irradiation protocol and treatment planning dose calculation using a humanoid phantom. Med Phys 37(12):6292–6299. doi:10.1118/1.3496355

    Article  CAS  PubMed  Google Scholar 

  12. Chen F, Covas DT, Baffa O (2001) Dosimetry of blood irradiation using an alanine/ESR dosimeter. Appl Radiat Isot 55(1):13–16. doi:10.1016/S0969-8043(00)00379-1

    Article  CAS  PubMed  Google Scholar 

  13. Budgell G, Berresford J, Trainer M, Bradshaw E, Sharpe P, Williams P (2011) A national dosimetric audit of IMRT. Radiother Oncol 99(2):246–252. doi:10.1016/j.radonc.2011.03.016

    Article  PubMed  Google Scholar 

  14. De Angelis C, De Costa V, Fattibene P, Onori S, Petetti E (2005) Use of alanine for dosimetry intercomparisons among Italian radiotherapy centers. Appl Radiat Isot 62(2):261–265. doi:10.1016/j.apradiso.2004.08.019

    Article  PubMed  Google Scholar 

  15. American Society for Testing and Materials (2012) Standard practice for use of the alanine-EPR dosimetry system. ASTM report no. ISO/ASTM51607-13

  16. Hayes RB (2000) Concerns regarding recent NIST publications on alanine dosimetry. Radiat Phys Chem 59(4):443–444. doi:10.1016/S0969-806X(00)00312-1

    Article  CAS  Google Scholar 

  17. Ciesielski B, Schultka K, Kobierska A, Nowak R, Peimel-Stuglik Z (2003) In vivo alanine/EPR dosimetry in daily clinical practice: a feasibility study. Int J Radiat Oncol Biol Phys 56(3):899–905. doi:10.1016/S0360-3016(03)00196-2

    Article  PubMed  Google Scholar 

  18. Al-Karmi AM (2010) Dosimetric evaluation of alanine-in-glass dosimeters at clinical dose levels using high-energy X-rays from a linear accelerator. Radiat Meas 45(1):133–135. doi:10.1016/j.radmeas.2009.10.063

    Article  CAS  Google Scholar 

  19. International Commission on Radiation Units and Measurements (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU report no. 44

  20. Izewska J, Bera P, Vatnitsky S (2002) IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry. Radiat Prot Dosim 101(1–4):387–392. doi:10.1093/oxfordjournals.rpd.a006008

    Article  CAS  Google Scholar 

  21. International Atomic Energy Agency (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA technical reports series no. 398 http://www-pub.iaea.org/mtcd/publications/pdf/trs398_scr.pdf

  22. Wieser A, Lettau C, Fill U, Regulla DF (1993) The influence of non-radiation induced ESR background signal from paraffin-alanine probes for dosimetry in the radiotherapy dose range. Appl Radiat Isot 44(1–2):59–65. doi:10.1016/0969-8043(93)90196-H

    Article  CAS  Google Scholar 

  23. Anton M, Kapsch RP, Krauss A, von Voigts-Rhetz P, Zink K, McEwen M (2013) Difference in the relative response of the alanine dosimeter to megavoltage X-ray and electron beams. Phys Med Biol 58(10):3259–3282. doi:10.1088/0031-9155/58/10/3259

    Article  CAS  PubMed  Google Scholar 

  24. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the evaluation of dose distributions. Med Phys 25(5):656–661. doi:10.1118/1.598248

    Article  CAS  PubMed  Google Scholar 

  25. International Commission on Radiation Units and Measurements (2010) Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy IMRT. ICRU report no. 83

Download references

Acknowledgments

The authors wish to acknowledge the support provided for this work by King Fahd University of Petroleum & Minerals through Fast Track project № FT101009. The authors also thank King Fahad Specialist Hospital in Dammam for providing access to the linear accelerator and the treatment planning system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anan M. Al-Karmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Karmi, A.M., Ayaz, A.A.H., Al-Enezi, M.S. et al. Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: a feasibility study. Australas Phys Eng Sci Med 38, 425–434 (2015). https://doi.org/10.1007/s13246-015-0360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0360-7

Keywords

Navigation