Skip to main content
Log in

Multi-channel EEG signal feature extraction and pattern recognition on horizontal mental imagination task of 1-D cursor movement for brain computer interface

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Brain computer interfaces (BCIs), based on multi-channel electroencephalogram (EEG) signal processing convert brain signal activities to machine control commands. It provides new communication way with a computer by extracting electroencephalographic activity. This paper, deals with feature extraction and classification of horizontal mental task pattern on 1-D cursor movement from EEG signals. The hemispherical power changes are computed and compared on alpha & beta frequencies and horizontal cursor control extracted with only mental imagination of cursor movements. In the first stage, features are extracted with the well-known average signal power or power difference (alpha and beta) method. Principal component analysis is used for reducing feature dimensions. All features are classified and the mental task patterns are recognized by three neural network classifiers which learning vector quantization, multilayer neural network and probabilistic neural network due to obtaining acceptable good results and using successfully in pattern recognition via k-fold cross validation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. McFarland DJ, Lefkowicz AT, Wolpaw JR (1997) Design and operation of an EEG-based brain-computer interface (BCI) with digital signal processing technology. Behav Res Methods Instrum Comput 29:337–345

    Article  Google Scholar 

  2. Fabiani GE, McFarland DJ, Wolpaw JR, Pfurtscheller G (2004) Conversion of eeg activity into cursor movement by a brain-computer interface (bci). IEEE Trans Neural Syst Rehabil Eng 12(3):331–338

    Article  PubMed  Google Scholar 

  3. Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101(51):17849–17854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kayagil T, Bai O, Lin P, Furlani S, Vorbach S, Hallett M (2007) Binary EEG control for two-dimensional cursor movement: An online approach. Intern. Conf. on Comp. Med. Eng. 1542-1545

  5. Wilson JA, Schalk G, Walton LM, Williams JC (2009) Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000. J Vis Exp 29:1319

    PubMed  Google Scholar 

  6. Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C (2010) An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans Biomed Eng 57(10):2495–2505

    Article  PubMed  Google Scholar 

  7. Boudria Y, Feltane A, Besio W (2014) Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography. J Neural Eng 11(3):035014

    Article  PubMed  Google Scholar 

  8. Jeong DH, Ziemkiewicz C, Ribarsky W, Chang R (2009) Understanding principal component analysis using a visual analytics tool. Charlotte Visualization Center, UNC, Charlotte

    Google Scholar 

  9. Rambabu C, Murthy BR (2014) EEG signal with feature extraction using SVM and ICA classifiers. Int J Comput Appl 85(3):1–7

    Google Scholar 

  10. Bishop CM (1995) Neural networks for pattern recognition. Clarendon Press, Oxford

    Google Scholar 

  11. Jasper H (1958) The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10(2):370–375

    Article  Google Scholar 

  12. Sleight J, Pillai P, Mohan S (2009) Classification of executed and imagined motor movement EEG signals. University of Michigan, Ann Arbor, pp 1–10

    Google Scholar 

  13. Cao LJ, Chua KS, Chong WK, Lee HP, Gu QM (2003) A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1):321–336

    Google Scholar 

  14. Kavita M, Vargantwar MR, Sangita MR (2011) Classification of EEG using PCA, ICA and neural network. Int J Eng Adv Technol 1:1–4

    Google Scholar 

  15. Müller KR, Krauledat M, Dornhege G, Curio G, Blankertz B (2004) Machine learning techniques for brain-computer interfaces. Bio Technol 49:11–12

    Article  Google Scholar 

  16. Kohonen T (1990) Improved versions of learning vector quantization. In: Proceedings of the IEEE ınternational joint conference on N. N, 545–550 New York

  17. Kohonen T (1997) Learning vector quantization, vol 30., Springer series in information sciencesSpringer, Berlin, pp 203–217. doi:10.1007/978-3-642-97966-8_6

    Google Scholar 

  18. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland J (eds) Parallel distributed processing. MIT Press, Cambridge, pp 318–362

    Google Scholar 

  19. Lapedes AS, Farber RM (1988) How neural nets work. In: Neural Information Processing Systems. pp 442–456

  20. Chester DL (1990) Why two hidden layers are better than one. In: International joint conference on neural networks, pp 265–268

  21. Hunter D, Yu H, Pukish MS, Kolbusz J, Wilamowski BM (2012) Selection of proper neural network sizes and architectures-a comparative study. IEEE Trans Ind Inform 8(2):228–240

    Article  Google Scholar 

  22. Hagan MT, Menhaj M (1994) Training feed forward networks with the Marquardt algorithm, IEEE Trans. Neural Netw 5:989–993

    Article  CAS  Google Scholar 

  23. Specht DF (1990) Probabilistic neural networks. Neural Netw 3:109–118

    Article  Google Scholar 

  24. Hazrati MKh, Erfanian A (2010) An online EEGbased brain–computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys 32(7):730–739

    Article  PubMed  Google Scholar 

  25. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York

    Google Scholar 

  26. Nasehi S, Pourghassem H (2012) An optimal EEG-based emotion recognition algorithm using gabor. WSEAS Trans Signal Proc 3(8):87–99

    Google Scholar 

  27. Ward Systems Group (2008) NeuroShell 2 user’s manual help (apply PNN network). Ward Systems Group, Inc., Maryland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Serdar Bascil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdar Bascil, M., Tesneli, A.Y. & Temurtas, F. Multi-channel EEG signal feature extraction and pattern recognition on horizontal mental imagination task of 1-D cursor movement for brain computer interface. Australas Phys Eng Sci Med 38, 229–239 (2015). https://doi.org/10.1007/s13246-015-0345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0345-6

Keywords

Navigation