Skip to main content
Log in

The influence of leaflet skin friction and stiffness on the performance of bioprosthetic aortic valves

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Leaflet skin friction and stiffness were found to have a significant influence on the systolic performance of a 19 mm diameter bioprosthetic aortic valve based on fluid–structure interaction simulations at a heart rate of 72 bpm. Four different leaflet skin friction coefficients (0.0, 9.2 × 10−4, 4.8 × 10−2 and 4.8 × 10−1) were simulated along with three different leaflet elastic moduli (3.0 × 106, 3.5 × 106, 4.0 × 106 N m−2). Higher leaflet skin friction was found to increase the magnitude of the systolic transvalvular pressure gradient and the peak velocity through the valve, as well as decrease the valve orifice area. The results for the leaflet opening and closing kinematics also showed that higher leaflet skin friction combined with higher leaflet stiffness produces longer rapid valve opening, closing and ejection times, as well as smaller valve orifice areas. These results are consistent with clinical findings for calcified aortic valves and suggest that valve performance under stenotic conditions is strongly influenced by the combined effect of increasing leaflet stiffness and surface roughness caused by calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BHV:

Bioprosthetic heart valve

bpm:

Beats per minute

CPD:

Cardiac pulse duplicator

ET:

Ejection time

FE:

Finite element

FSI:

Fluid–structure interaction

rms:

Root mean square

RVC:

Rapid valve closing

RVCT:

Rapid valve closing time

RVOT:

Rapid valve opening time

STVPG:

Systolic transvalvular pressure gradient

SVC:

Slow valve closing

VOA:

Valve orifice area

References

  1. Flachskampf FA, Daniel WG (2004) Aortic valve stenosis. Internist (Berl.) 45(11):1281–1290

    Article  CAS  Google Scholar 

  2. Brown JM, O’Brien SM, Wu C, Sikora JA, Griffith BP, Gammie JS (2009) Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J Thorac Cardiovasc Surg 137(1):82–90

    Article  PubMed  Google Scholar 

  3. Fisher J, Spyt TJ, Wheatley DJ (1989) Failure and hydrodynamic function testing of explanted pericardial and porcine bioprosthetic valves. Proc Inst Mech Eng H 203(2):65–70

    Article  CAS  PubMed  Google Scholar 

  4. Lim W, Chew Y, Chew TC, Low HT (1997) Steady flow velocity field and turbulent stress mappings downstream of a porcine bioprosthetic aortic valve in vitro. Ann Biomed Eng 25(1):86–95

    Article  CAS  PubMed  Google Scholar 

  5. Morsi YS, Wong CS (2008) Current developments and future challenges for the creation of aortic heart valve. J Mech Med Biol 8(1):1–15

    Article  Google Scholar 

  6. Morsi YS, Birchall I (2005) Tissue engineering a functional aortic heart valve: an appraisal. Future Cardiol 1(3):405–411

    Article  CAS  PubMed  Google Scholar 

  7. Morsi YS, Birchall IE, Rosenfeldt FL (2004) Artificial aortic valves: an overview. Int J Artif Organs 27(6):445–451

    CAS  PubMed  Google Scholar 

  8. Morsi YS (2012) Tissue engineering of the aortic heart valve: fundamentals and developments. Nova Science Publishers, New York

    Google Scholar 

  9. Morsi Y, Ahmad A, Hassan A (2001) Numerical simulation of the turbulent flow field distal to an aortic heart valve. Front Med Biol Eng 11(1):1–11

    Article  CAS  PubMed  Google Scholar 

  10. Lin Q, Morsi YS, Smith B, Yang W (2004) Numerical simulation and structure verification of jellyfish heart valve. Int J Comp Appl Tech 21(1–2):2–7

    Article  Google Scholar 

  11. Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10(2):96–103

    Article  PubMed  Google Scholar 

  12. De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2003) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36(1):103–112

    Article  PubMed  Google Scholar 

  13. Carmody CJ, Burriesci G, Howard IC, Patterson EA (2003) An approach to the simulation of fluid-structure interaction in the aortic valve. J Biomech 39(1):158–169

    Article  Google Scholar 

  14. Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R (2006) Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact CardioVasc Thorac Surg 5(4):373–378

    Google Scholar 

  15. Van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Num Meth Fluids 46(5):533–544

    Google Scholar 

  16. Weinberg EJ, Kaazempur-Mofrad MR (2007) Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng 7(4):140–155

    Article  PubMed  Google Scholar 

  17. Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Montevecchi FM, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J Biomech 41(11):2539–2550

    Article  PubMed  Google Scholar 

  18. Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344

    Article  PubMed Central  PubMed  Google Scholar 

  19. Becker W, Rowson J, Oakley JE, Yoxall A, Manson G, Worden K (2011) Bayesian sensitivity analysis of a model of the aortic valve. J Biomech 44(8):1499–1506

    Article  CAS  PubMed  Google Scholar 

  20. Marom G, Haj-Ali R, Raanani E, Schäfers HJ, Rosenfeld MA (2012) A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50(2):173–182

    Article  PubMed  Google Scholar 

  21. Clark C (1977) Turbulent wall pressure measurements in a model of aortic stenosis. J Biomech 10(8):461–472

    Article  CAS  PubMed  Google Scholar 

  22. Kemp I (2012) Development of a bioprosthetic valve for transcatheter aortic valve implantation. M.Sc. Thesis. Stellenbosch University

  23. Kemp I, Dellimore KH, Rodriguez R, Scheffer C, Blaine D, Weich H, Doubell A (2013) Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve. Australas Phys Eng Sci Med. doi:10.1007/s13246-013-0213-1

    Google Scholar 

  24. Esterhuyse A, van der Westhuizen K, Doubell A, Weich H, Scheffer C, Dellimore KH (2012) Application of the finite element method to the fatigue life prediction of a stent for a percutaneous heart valve. J Mech Med Biol 12(1):1–18

    Article  Google Scholar 

  25. Smuts AN, Blaine DC, Scheffer C, Weich H, Doubell AF, Dellimore KH (2011) Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J Mech Behav Bio Mat 4(1):85–98

    Article  CAS  Google Scholar 

  26. MSC Software Corporation (2010) Dytran theory manual

  27. Einav S, Stolero D, Avidor JM, Elad D, Talbot L (1990) Wall shear stress distribution along the cusp of a tri-leaflet prosthetic valve. J Biomed Eng 12(1):13–18

    Article  CAS  PubMed  Google Scholar 

  28. Weston M, LaBorde D, Yoganathan A (1999) Estimation of the shear stress on the surface of an aortic valve leaflet. Ann Biomed Eng 27(4):572–579

    Article  CAS  PubMed  Google Scholar 

  29. Weinberg EJ, Mack PJ, Schoen FJ, García-Cardeña G, Kaazempur-Mofrad MR (2010) Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc Eng 10(1):5–11

    Article  PubMed Central  PubMed  Google Scholar 

  30. Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11(7):1085–1096

    Article  PubMed  Google Scholar 

  31. Yap CH, Saikrishnan N, Yoganathan AP (2012) Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol 11(1):231–244

    Article  PubMed  Google Scholar 

  32. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM (1997) Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol 29(3):630–634

    Article  CAS  PubMed  Google Scholar 

  33. Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111(24):3316–3326

    Article  PubMed  Google Scholar 

  34. Otto CM (2006) Valvular aortic stenosis: disease severity and timing of intervention. J Am Coll Cardiol 47(11):2141–2151

    Article  PubMed  Google Scholar 

  35. Zoghbi WA, Galon A, Quinones MA (1988) Accurate assessment of aortic stenosis severity by Doppler echocardiography independent of aortic jet velocity. Am Heart J 116(3):855–863

    Article  CAS  PubMed  Google Scholar 

  36. Arsenault M, Masani N, Magni G, Yao J, Deras L, Pandian N (1998) Variation of anatomic valve area during ejection in patients with valvular aortic stenosis evaluated by two-dimensional echocardiographic planimetry: comparison with traditional Doppler data. J Am Coll Cardiol 32(7):1931–1937

    Article  CAS  PubMed  Google Scholar 

  37. Handke M, Heinrichs G, Beyersdorf F, Olschewski M, Bode C, Geibel A (2003) In vivo analysis of aortic valve dynamics by transesophageal 3-dimensional echocardiography with high temporal resolution. J Thorac Cardiovasc Surg 125(6):1412–1419

    Article  PubMed  Google Scholar 

  38. Stähli BE, Maier W, Corti R et al (2013) Aortic regurgitation after transcatheter aortic valve implantation: mechanisms and implications. Cardiovasc Diagn Ther 3(1):15–22

    PubMed Central  PubMed  Google Scholar 

  39. McEniery CM, McDonnell BJ, So A et al (2009) Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53(3):524–531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Claude Leon Foundation and the valuable insights provided by Dr. Debbie Blaine in the analysis of the FSI simulation results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dellimore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellimore, K., Kemp, I., Scheffer, C. et al. The influence of leaflet skin friction and stiffness on the performance of bioprosthetic aortic valves. Australas Phys Eng Sci Med 36, 473–486 (2013). https://doi.org/10.1007/s13246-013-0230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-013-0230-0

Keywords

Navigation