Skip to main content
Log in

The Effect of Skeletal Muscle-Pump on Blood Pressure and Postural Control in Parkinson's Disease

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Activation of the calf (gastrocnemius and soleus) and tibialis anterior muscles play an important role in blood pressure regulation (via muscle-pump mechanism) and postural control. Parkinson’s disease is associated with calf (and tibialis anterior muscles weakness and stiffness, which contribute to postural instability and associated falls. In this work, we studied the role of the medial and lateral gastrocnemius, tibialis anterior, and soleus muscle contractions in maintaining blood pressure and postural stability in Parkinson’s patients and healthy controls during standing. In addition, we investigated whether the activation of the calf and tibialis anterior muscles is baroreflex dependent or postural-mediated.

Methods

We recorded electrocardiogram, blood pressure, center of pressure as a measure of postural sway, and muscle activity from the medial and lateral gastrocnemius, tibialis anterior, and soleus muscles from twenty-six Parkinson’s patients and eighteen sex and age-matched healthy controls during standing and with eyes open. The interaction and bidirectional causalities between the cardiovascular, musculoskeletal, and postural variables were studied using wavelet transform coherence and convergent cross-mapping techniques, respectively.

Results

Parkinson’s patients experienced a higher postural sway and demonstrated mechanical muscle-pump dysfunction of all individual leg muscles, all of which contribute to postural instability. Moreover, our results showed that coupling between the cardiovascular, musculoskeletal, and postural variables is affected by Parkinson’s disease while the contribution of the calf and tibialis anterior muscles is greater for blood pressure regulation than postural sway.

Conclusion

The outcomes of this study could assist in the development of appropriate physical exercise programs that target lower limb muscles to improve the muscle-pump function and reduce postural instability in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lanier, J. B., M. B. Mote, and E. C. Clay. Evaluation and management of orthostatic hypotension. AFP. 84(5):527–536, 2011.

    Google Scholar 

  2. Fanciulli, A., F. Leys, C. Falup-Pecurariu, R. Thijs, and G. K. Wenning. Management of orthostatic hypotension in Parkinson’s disease. J. Parkinson’s Dis. 10(s1):S57–S64, 2020. https://doi.org/10.3233/JPD-202036.

    Article  CAS  Google Scholar 

  3. Mar, P. L., and S. R. Raj. Orthostatic hypotension for the cardiologist. Curr. Opin. Cardiol. 33(1):66–72, 2018. https://doi.org/10.1097/HCO.0000000000000467.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allen, N. E., A. K. Schwarzel, and C. G. Canning. Recurrent falls in Parkinson’s disease: a systematic review. Parkinsons Dis. 2013:906274, 2013. https://doi.org/10.1155/2013/906274.

    Article  PubMed  PubMed Central  Google Scholar 

  5. LeWitt, P. A., S. Kymes, and R. A. Hauser. Parkinson disease and orthostatic hypotension in the elderly: recognition and management of risk factors for falls. Aging Dis. 11(3):679–691, 2019. https://doi.org/10.14336/AD.2019.0805.

    Article  PubMed Central  Google Scholar 

  6. Degani, A. M., V. S. Cardoso, A. T. Magalhães, A. L. S. Assunção, E. C. de Soares, and A. Danna-Dos-Santos. Postural behavior in medicated Parkinson disease patients: a preliminary study searching for indicators to track progress. J. Cent. Nerv. Syst. Dis. 12:1179573520922645, 2020. https://doi.org/10.1177/1179573520922645.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Orawiec, R. B., S. B. Nowak, and P. Tomaszewski. Postural stability in Parkinson’s disease patients’ wives and in elderly women leading different lifestyles. Health Care Women Int. 40(10):1070–1083, 2019. https://doi.org/10.1080/07399332.2018.1531865.

    Article  PubMed  Google Scholar 

  8. Nallegowda, M., et al. Role of sensory input and muscle strength in maintenance of balance, gait, and posture in Parkinson’s disease: a pilot study. Am. J. Phys. Med. Rehabil. 83(12):898–908, 2004. https://doi.org/10.1097/01.phm.0000146505.18244.43.

    Article  PubMed  Google Scholar 

  9. Di Giulio, I., C. N. Maganaris, V. Baltzopoulos, and I. D. Loram. The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. J. Physiol. 587(Pt 10):2399–2416, 2009. https://doi.org/10.1113/jphysiol.2009.168690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Le Mouel, C., and R. Brette. Mobility as the purpose of postural control. Front. Comput. Neurosci. 2017. https://doi.org/10.3389/fncom.2017.00067.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yodchaisarn, W., R. Puntumetakul, A. Emasithi, R. Boucaut, and U. Chatchawan. Altered postural sway during quiet standing in women with clinical lumbar instability. J. Phys. Ther. Sci. 30(8):1099–1102, 2018. https://doi.org/10.1589/jpts.30.1099.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Winter, D. Human balance and posture control during standing and walking. Gait Posture. 3(4):193–214, 1995. https://doi.org/10.1016/0966-6362(96)82849-9.

    Article  Google Scholar 

  13. Verma, A. K., D. Xu, A. Garg, A. P. Blaber, and K. Tavakolian. Effect of aging on muscle-pump baroreflex of individual leg muscles during standing. Front. Physiol. 10:845, 2019. https://doi.org/10.3389/fphys.2019.00845.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verma, A. K., et al. Skeletal muscle pump drives control of cardiovascular and postural systems. Sci. Rep. 7(1):45301, 2017. https://doi.org/10.1038/srep45301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian, F., T. Tarumi, H. Liu, R. Zhang, and L. Chalak. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy. NeuroImage. 11:124–132, 2016. https://doi.org/10.1016/j.nicl.2016.01.020.

    Article  PubMed  PubMed Central  Google Scholar 

  16. de Boer, R. W., and J. M. Karemaker. Cross-wavelet time-frequency analysis reveals sympathetic contribution to baroreflex sensitivity as cause of variable phase delay between blood pressure and heart rate. Front. Neurosci. 13:694, 2019. https://doi.org/10.3389/fnins.2019.00694.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hammami, I., L. Salhi, and S. Labidi. Voice pathologies classification and detection using EMD-DWT analysis based on higher order statistic features. IRBM. 41(3):161–171, 2020. https://doi.org/10.1016/j.irbm.2019.11.004.

    Article  Google Scholar 

  18. Gupta, V., and M. Mittal. A comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. IRBM. 40(3):145–156, 2019. https://doi.org/10.1016/j.irbm.2019.04.003.

    Article  Google Scholar 

  19. Xu, D., et al. Significant role of the cardiopostural interaction in blood pressure regulation during standing. Am. J. Physiol. Heart Circ. Physiol. 313(3):H568–H577, 2017. https://doi.org/10.1152/ajpheart.00836.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garg, A., D. Xu, A. Laurin, and A. P. Blaber. Physiological interdependence of the cardiovascular and postural control systems under orthostatic stress. Am. J. Physiol. Heart Circ. Physiol. 307(2):H259-264, 2014. https://doi.org/10.1152/ajpheart.00171.2014.

    Article  CAS  PubMed  Google Scholar 

  21. Grinsted, A., J. C. Moore, and S. Jevrejeva. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11(5/6):561–566, 2004.

    Article  Google Scholar 

  22. Sugihara, G., et al. Detecting causality in complex ecosystems. Science. 338(6106):496–500, 2012. https://doi.org/10.1126/science.1227079.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, D., M. F. Tremblay, A. K. Verma, K. Tavakolian, N. Goswami, and A. P. Blaber. Cardio-postural interactions and muscle-pump baroreflex are severely impacted by 60-day bedrest immobilization. Sci. Rep. 10(1):12042, 2020. https://doi.org/10.1038/s41598-020-68962-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. del Ferreira-Sánchez, M. R., M. Moreno-Verdú, and R. Cano-de-la-Cuerda. Quantitative measurement of rigidity in Parkinson’s disease: a systematic review. Sensors (Basel). 20(3):880, 2020. https://doi.org/10.3390/s20030880.

    Article  PubMed  Google Scholar 

  25. Kang, G. A., J. M. Bronstein, D. L. Masterman, M. Redelings, J. A. Crum, and B. Ritz. Clinical characteristics in early Parkinson’s disease in a central California population-based study. Mov. Disord. 20(9):1133, 2005. https://doi.org/10.1002/mds.20513.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Durmus, B., O. Baysal, S. Altinayar, Z. Altay, Y. Ersoy, and C. Ozcan. Lower extremity isokinetic muscle strength in patients with Parkinson’s disease. J Clin. Neurosci. 17(7):893–896, 2010. https://doi.org/10.1016/j.jocn.2009.11.014.

    Article  PubMed  Google Scholar 

  27. Termoz, N., S. E. Halliday, D. A. Winter, J. S. Frank, A. E. Patla, and F. Prince. The control of upright stance in young, elderly and persons with Parkinson’s disease. Gait Posture. 27(3):463, 2008. https://doi.org/10.1016/j.gaitpost.2007.05.015.

    Article  PubMed  Google Scholar 

  28. Cantú, H., J. Nantel, M. Millán, C. Paquette, and J. N. Côté. Abnormal muscle activity and variability before, during, and after the occurrence of freezing in Parkinson’s disease. Front. Neurol. 2019. https://doi.org/10.3389/fneur.2019.00951.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Costa, S., et al. Biomechanical evaluation of an exoskeleton for rehabilitation of individuals with Parkinson’s disease. IRBM. 44(1):100741, 2023. https://doi.org/10.1016/j.irbm.2022.11.002.

    Article  Google Scholar 

  30. Kamieniarz, A., et al. Detection of postural control in early Parkinson’s disease: clinical testing vs modulation of center of pressure. PLoS ONE. 16(1):e0245353, 2021. https://doi.org/10.1371/journal.pone.0245353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sabino-Carvalho, J. L., and L. C. Vianna. Altered cardiorespiratory regulation during exercise in patients with Parkinson’s disease: a challenging non-motor feature. SAGE Open Med. 8:2050312120921603, 2020. https://doi.org/10.1177/2050312120921603.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pérez, T., et al. Cardiocirculatory manifestations in Parkinson’s disease patients without orthostatic hypotension. J. Hum. Hypertens. 29(10):604–609, 2015. https://doi.org/10.1038/jhh.2014.131.

    Article  CAS  PubMed  Google Scholar 

  33. Del Din, S., A. Godfrey, S. Coleman, B. Galna, S. Lord, and L. Rochester. Time-dependent changes in postural control in early Parkinson’s disease: what are we missing? Med. Biol. Eng. Comput. 54(2):401–410, 2016. https://doi.org/10.1007/s11517-015-1324-5.

    Article  PubMed  Google Scholar 

  34. Lalo, E., et al. Design of technology and technology of design. activity analysis as a resource for a personalised approach for patients with Parkinson disease. IRBM. 37(2):90–97, 2016. https://doi.org/10.1016/j.irbm.2016.02.010.

    Article  Google Scholar 

  35. Fadil, R., et al. Effect of Parkinson’s disease on cardio-postural coupling during orthostatic challenge. Front. Physiol. 2022. https://doi.org/10.3389/fphys.2022.863877.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Andrezik, J. A., K. J. Dormer, R. D. Foreman, and R. J. Person. Fastigial nucleus projections to the brain stem in beagles: pathways for autonomic regulation. Neuroscience. 11(2):497–507, 1984. https://doi.org/10.1016/0306-4522(84)90040-x.

    Article  CAS  PubMed  Google Scholar 

  37. Rector, D. M., C. A. Richard, and R. M. Harper. Cerebellar fastigial nuclei activity during blood pressure challenges. J. Appl. Physiol. 101(2):549–555, 2006. https://doi.org/10.1152/japplphysiol.00044.2006.

    Article  CAS  PubMed  Google Scholar 

  38. Lutherer, L. O., J. L. Williams, and S. J. Everse. Neurons of the rostral fastigial nucleus are responsive to cardiovascular and respiratory challenges. J. Auton. Nerv. Syst. 27(2):101–111, 1989. https://doi.org/10.1016/0165-1838(89)90092-1.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X.-Y., J.-J. Wang, and J.-N. Zhu. Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum Ataxias. 2016. https://doi.org/10.1186/s40673-016-0047-1.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nasreddine, Z. S., et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53(4):695–699, 2005. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

    Article  PubMed  Google Scholar 

  41. Goetz, C. G., et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov. Disord. 22(1):41–47, 2007. https://doi.org/10.1002/mds.21198.

    Article  PubMed  Google Scholar 

  42. Kaufmann, H., R. Malamut, L. Norcliffe-Kaufmann, K. Rosa, and R. Freeman. The Orthostatic Hypotension Questionnaire (OHQ): validation of a novel symptom assessment scale. Clin. Auton. Res. 22(2):79–90, 2012. https://doi.org/10.1007/s10286-011-0146-2.

    Article  PubMed  Google Scholar 

  43. Visser, M., J. Marinus, A. M. Stiggelbout, and J. J. Van Hilten. Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov. Disord. 19(11):1306–1312, 2004. https://doi.org/10.1002/mds.20153.

    Article  PubMed  Google Scholar 

  44. Smets, E. M., B. Garssen, B. Bonke, and J. C. De Haes. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 39(3):315–325, 1995. https://doi.org/10.1016/0022-3999(94)00125-o.

    Article  CAS  PubMed  Google Scholar 

  45. Tomlinson, C. L., R. Stowe, S. Patel, C. Rick, R. Gray, and C. E. Clarke. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25(15):2649–2653, 2010. https://doi.org/10.1002/mds.23429.

    Article  PubMed  Google Scholar 

  46. Hermens, H., et al. SENIAM 8: European recommendations for surface electromyography. Roessingh Res. Dev. 8:13–54, 1999.

    Google Scholar 

  47. Xu, D., M. F. Tremblay, A. K. Verma, K. Tavakolian, N. Goswami, and A. P. Blaber. Cardio-postural interactions and muscle-pump baroreflex are severely impacted by 60-day bedrest immobilization. Sci. Rep. 10:985, 2020. https://doi.org/10.1038/s41598-020-68962-8.

    Article  CAS  Google Scholar 

  48. Xu, D., et al. Significant role of the cardiopostural interaction in blood pressure regulation during standing. Am. J. Physiol. Heart Circ. Physiol. 313:H568, 2017. https://doi.org/10.1152/ajpheart.00836.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fadil, R., A. K. Verma, F. Sadeghian, A. P. Blaber, and K. Tavakolian. Cardio-respiratory interactions in response to lower-body negative pressure. Physiol. Meas. 44(2):025005, 2023. https://doi.org/10.1088/1361-6579/acb7c6.

    Article  Google Scholar 

  50. Sadeghian, F., D. N. Divsalar, R. Fadil, K. Tavakolian, and A. P. Blaber. Canadian aging and inactivity study: spaceflight-inspired exercises during head-down tilt bedrest blunted reductions in muscle-pump but not cardiac baroreflex in older persons. Front. Physiol. 2022. https://doi.org/10.3389/fphys.2022.943630.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Verma, A. K., et al. Skeletal muscle pump drives control of cardiovascular and postural systems. Sci. Rep. 2017. https://doi.org/10.1038/srep45301.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wallot, S., and D. Mønster. Calculation of average mutual information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab. Front. Psychol. 9:1679, 2018. https://doi.org/10.3389/fpsyg.2018.01679.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Blaber, A. P., C. K. Landrock, and P. A. Souvestre. Cardio-postural deconditioning: a model for post-flight orthostatic intolerance. Respir. Physiol. Neurobiol. 169(Suppl 1):S21-25, 2009. https://doi.org/10.1016/j.resp.2009.04.007.

    Article  PubMed  Google Scholar 

  54. Garg, A., D. Xu, and A. P. Blaber. Statistical validation of wavelet transform coherence method to assess the transfer of calf muscle activation to blood pressure during quiet standing. Biomed. Eng. Online. 12:132, 2013. https://doi.org/10.1186/1475-925X-12-132.

    Article  PubMed  PubMed Central  Google Scholar 

  55. du Prel, J.-B., B. Röhrig, G. Hommel, and M. Blettner. Choosing statistical tests. Dtsch. Arztebl. Int. 107(19):343–348, 2010. https://doi.org/10.3238/arztebl.2010.0343.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pinho, N., et al. The impact of the right coronary artery geometric parameters on hemodynamic performance. Cardiovasc. Eng. Technol. 10(2):257–270, 2019. https://doi.org/10.1007/s13239-019-00403-8.

    Article  CAS  PubMed  Google Scholar 

  57. R Development Core Team, A language and environment for statistical computing: reference index. Vienna: R Foundation for Statistical Computing, 2010. Accessed: Nov. 23, 2021. http://www.polsci.wvu.edu/duval/PS603/Notes/R/fullrefman.pdf

  58. Naruse, R., C. Taki, M. Yaegashi, Y. Sakaue, N. Shiozawa, and T. Kimura. Attenuated spontaneous postural sway enhances diastolic blood pressure during quiet standing. Eur. J. Appl. Physiol. 121(1):251–264, 2021. https://doi.org/10.1007/s00421-020-04519-x.

    Article  PubMed  Google Scholar 

  59. Zhang, X.-Y., J.-J. Wang, and J.-N. Zhu. Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum Ataxias. 3(1):9, 2016. https://doi.org/10.1186/s40673-016-0047-1.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fujita, H., T. Kodama, and S. du Lac. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife. 9:e58613, 2020. https://doi.org/10.7554/eLife.58613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams, C. L., D. Men, and E. C. Clayton. The effects of noradrenergic activation of the nucleus tractus solitarius on memory and in potentiating norepinephrine release in the amygdala. Behav. Neurosci. 114(6):1131–1144, 2000. https://doi.org/10.1037/0735-7044.114.6.1131.

    Article  CAS  PubMed  Google Scholar 

  62. Mello-Carpes, P. B., and I. Izquierdo. The Nucleus of the Solitary Tract → Nucleus Paragigantocellularis → Locus Coeruleus → CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol. Learn. Mem. 100:56–63, 2013. https://doi.org/10.1016/j.nlm.2012.12.002.

    Article  CAS  PubMed  Google Scholar 

  63. Lopes, L. T., et al. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats. Neuroscience. 324:446–468, 2016. https://doi.org/10.1016/j.neuroscience.2016.03.036.

    Article  CAS  PubMed  Google Scholar 

  64. Somana, R., and F. Walberg. The cerebellar projection from locus coeruleus as studied with retrograde transport of horseradish peroxidase in the cat. Anat. Embryol. (Berl.). 155(1):87–94, 1978. https://doi.org/10.1007/BF00315733.

    Article  CAS  PubMed  Google Scholar 

  65. Tao, W., W. Jianjun, C. Hong, L. Hongzhao, and Y. Qixiang. Modulation of neuronal activity of cerebellar fastigial nucleus by locus coeruleus stimulation in the rat. Chin. Sci. Bull. 43(11):940–944, 1998. https://doi.org/10.1007/BF02884618.

    Article  Google Scholar 

  66. Yu, M., and S.-M. Wang. “Neuroanatomy, Nucleus Fastigial”, in StatPearls. Treasure Island: StatPearls Publishing, 2022.

    Google Scholar 

  67. Durmus, B., O. Baysal, S. Altinayar, Z. Altay, Y. Ersoy, and C. Ozcan. Lower extremity isokinetic muscle strength in patients with Parkinson’s disease. J. Clin. Neurosci. 17(7):893–896, 2010. https://doi.org/10.1016/j.jocn.2009.11.014.

    Article  PubMed  Google Scholar 

  68. Skinner, J. W., E. A. Christou, and C. J. Hass. Lower extremity muscle strength and force variability in persons with Parkinson disease. J. Neurol. Phys. Ther. 43(1):56–62, 2019. https://doi.org/10.1097/NPT.0000000000000244.

    Article  PubMed  Google Scholar 

  69. Daubney, M. E., and E. G. Culham. Lower-extremity muscle force and balance performance in adults aged 65 years and older. Phys. Ther. 79(12):1177–1185, 1999.

    Article  CAS  PubMed  Google Scholar 

  70. Kouzaki, M., and M. Shinohara. Steadiness in plantar flexor muscles and its relation to postural sway in young and elderly adults. Muscle Nerve. 42(1):78–87, 2010. https://doi.org/10.1002/mus.21599.

    Article  PubMed  PubMed Central  Google Scholar 

  71. McClenaghan, B. A., H. G. Williams, J. Dickerson, M. Dowda, L. Thombs, and P. Eleazer. Spectral characteristics of aging postural control. Gait Posture. 4(2):112–121, 1996. https://doi.org/10.1016/0966-6362(95)01040-8.

    Article  Google Scholar 

  72. Rhea, C. K., A. W. Kiefer, F. J. Haran, S. M. Glass, and W. H. Warren. A new measure of the CoP trajectory in postural sway: dynamics of heading change. Med. Eng. Phys. 36(11):1473–1479, 2014. https://doi.org/10.1016/j.medengphy.2014.07.021.

    Article  PubMed  Google Scholar 

  73. Slobounov, S., M. Hallett, C. Cao, and K. Newell. Modulation of cortical activity as a result of voluntary postural sway direction: an EEG study. Neurosci. Lett. 442(3):309–313, 2008. https://doi.org/10.1016/j.neulet.2008.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, Y.-J., J. N. Liang, B. Chen, and A. S. Aruin. Characteristics of medial-lateral postural control while exposed to the external perturbation in step initiation. Sci. Rep. 2019. https://doi.org/10.1038/s41598-019-53379-9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. McGraw, B., B. A. McClenaghan, H. G. Williams, J. Dickerson, and D. S. Ward. Gait and postural stability in obese and nonobese prepubertal boys. Arch. Phys. Med. Rehabil. 81(4):484–489, 2000. https://doi.org/10.1053/mr.2000.3782.

    Article  CAS  PubMed  Google Scholar 

  76. Stylianou, A. P., M. A. McVey, K. E. Lyons, R. Pahwa, and C. W. Luchies. Postural sway in patients with mild to moderate Parkinson’s disease. Int. J. Neurosci. 121(11):614–621, 2011. https://doi.org/10.3109/00207454.2011.602807.

    Article  PubMed  Google Scholar 

  77. Kato, K., T. Vogt, and K. Kanosue. Brain activity underlying muscle relaxation. Front. Physiol. 2019. https://doi.org/10.3389/fphys.2019.01457.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Grasso, M., L. Mazzini, and M. Schieppati. Muscle relaxation in Parkinson’s disease: a reaction time study. Mov. Disord. 11(4):411–420, 1996. https://doi.org/10.1002/mds.870110410.

    Article  CAS  PubMed  Google Scholar 

  79. Inkster, L. M., J. J. Eng, D. L. MacIntyre, and A. J. Stoessl. Leg muscle strength is reduced in PD and relates to the ability to rise from a chair. Mov. Disord. 18(2):157–162, 2003. https://doi.org/10.1002/mds.10299.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Masani, K., D. G. Sayenko, and A. H. Vette. What triggers the continuous muscle activity during upright standing? Gait Posture. 37(1):72–77, 2013. https://doi.org/10.1016/j.gaitpost.2012.06.006.

    Article  PubMed  Google Scholar 

  81. Carpinella, I., et al. Counteracting postural perturbations through body weight shift: a pilot study using a robotic platform in subjects with Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2018. https://doi.org/10.1109/TNSRE.2018.2862463.

    Article  PubMed  Google Scholar 

  82. Hagio, K., H. Obata, and K. Nakazawa. Effects of breathing movement on the reduction of postural sway during postural-cognitive dual tasking. PLoS ONE. 13(5):e0197385, 2018. https://doi.org/10.1371/journal.pone.0197385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Howorka, K., et al. Effects of guided breathing on blood pressure and heart rate variability in hypertensive diabetic patients. Auton. Neurosci. 179(1–2):131–137, 2013. https://doi.org/10.1016/j.autneu.2013.08.065.

    Article  PubMed  Google Scholar 

  84. Nuckowska, M. K., et al. Impact of slow breathing on the blood pressure and subarachnoid space width oscillations in humans. Sci. Rep. 9(1):6232, 2019. https://doi.org/10.1038/s41598-019-42552-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rodrigues, G. D., J. L. Gurgel, T. R. Gonçalves, F. Porto, and P. P. S. da Soares. Influence of breathing patterns and orthostatic stress on postural control in older adults. Geriatr. Gerontol. Int. 18(5):692–697, 2018. https://doi.org/10.1111/ggi.13231.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. and Mrs. Joseph Peltier for their endowment to Sanford Parkinson’s disease laboratory. The authors appreciate the valuable help of the participants to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouhyar Tavakolian.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Associate Editor Jamshid Karimov oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadil, R., Huether, A.X.A., Sadeghian, F. et al. The Effect of Skeletal Muscle-Pump on Blood Pressure and Postural Control in Parkinson's Disease. Cardiovasc Eng Tech 14, 755–773 (2023). https://doi.org/10.1007/s13239-023-00685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-023-00685-z

Keywords

Navigation