Skip to main content
Log in

Enhanced Embolization Efficacy with the Embolic Microspheres Guided by the Aggregate Gradation Theory Through In Vitro and Simulation Evaluation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Size of the embolic microspheres is of critical importance in the transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) to achieve the optimal embolization therapy. In this regard, to optimize the size distribution of the embolic microspheres and enhance the embolization efficacy, the aggregate gradation theory is used to formulate the microspheres.

Methods

Finite element analysis (FEA) and in vitro experiments confirmed a better embolic efficacy for the poly(vinyl alcohol) (PVA) microspheres formulated according to the aggregate gradation theory.

Results

The average volume flow of the graded group was 1.31 × 10−4 mL/s in vitro experiment, which was lowest among all the groups suggesting the graded group had the optimal embolic effect. The graded group has the largest pressure gradient of 314.22 Pa/μm in FEA among all the groups, which can be attributed to the highest packing density of the graded group compared with other groups.

Conclusions

The graded embolic microspheres have a larger drag coefficient compared with the narrow size distribution groups both in vitro experiment and FEA. These findings can be used to formulate the embolic agents with optimal size distributions and are significant for the improvement of clinical embolization therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akinwande, O. K., P. Philips, P. Duras, S. Pluntke, C. Scoggins, and R. C. Martin. Small versus large-sized drug-eluting beads (DEBIRI) for the treatment of hepatic colorectal metastases: a propensity score matching analysis. Cardiovasc. Intervent. Radiol. 38:361–371, 2015.

    Article  Google Scholar 

  2. Bannerman, D., and W. Wan. Multifunctional microbeads for drug delivery in TACE. Expert Opin. Drug Deliv. 13:1289–1300, 2016.

    Article  CAS  Google Scholar 

  3. Barentsz, M. W., M. A. Vente, M. G. Lam, M. L. Smits, J. F. Nijsen, B. A. Seinstra, C. E. Rosenbaum, H. M. Verkooijen, B. A. Zonnenberg, and M. A. Van den Bosch. Technical solutions to ensure safe yttrium-90 radioembolization in patients with initial extrahepatic deposition of (99m) technetium-albumin macroaggregates. Cardiovasc. Intervent. Radiol. 34:1074–1079, 2011.

    Article  CAS  Google Scholar 

  4. Basciano, C. A., C. Kleinstreuer, and A. S. Kennedy. Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J. Nucl. Med. 02:1000112, 2011.

    Google Scholar 

  5. Basciano, C. A., C. Kleinstreuer, A. S. Kennedy, W. A. Dezarn, and E. Childress. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann. Biomed. Eng. 38:1862–1879, 2010.

    Article  Google Scholar 

  6. Bastiana, P., R. Bartkowski, H. Köhlerb, and T. Kissela. Chemo-embolization of experimental liver metastases. Part I: distribution of biodegradable microspheres of different sizes in an animal model for the locoregional therapy. Eur J Pharm Biopharm 46:243–254, 1998.

    Article  Google Scholar 

  7. Bathe, K. J., H. Zhang, and M. H. Wang. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Comput. Struct. 56:193–213, 1995.

    Article  Google Scholar 

  8. Bonne, L., C. Verslype, A. Laenen, S. Cornelissen, C. M. Deroose, H. Prenen, V. Vandecaveye, E. Van Cutsem, and G. Maleux. Safety and efficacy of doxorubicin-eluting superabsorbent polymer microspheres for the treatment of liver metastases from neuroendocrine tumours: preliminary results. Radiol. Oncol. 51:74–80, 2017.

    Article  CAS  Google Scholar 

  9. Caine, M., D. Carugo, X. Zhang, M. Hill, M. R. Dreher, and A. L. Lewis. Review of the development of methods for characterization of microspheres for use in embolotherapy: translating bench to cathlab. Adv. Healthc. Mater. 6:1601291, 2017.

    Article  CAS  Google Scholar 

  10. Caine, M., D. Carugo, X. Zhang, M. Hill, M. R. Dreher, and A. L. Lewis. Review of the development of methods for characterization of microspheres for use in embolotherapy: translating bench to cathlab. Adv. Healthc. Mater. 6:1061291, 2017.

    Article  Google Scholar 

  11. Carugo, D., L. Capretto, B. Roy, M. Carboni, M. Caine, A. L. Lewis, M. Hill, S. Chakraborty, and X. Zhang. Spatiotemporal dynamics of doxorubicin elution from embolic beads within a microfluidic network. J. Control. Release 214:62–75, 2015.

    Article  CAS  Google Scholar 

  12. Fabbri, D., Q. Long, S. Das, and M. Pinelli. Computational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density. Biomech. Model. Mechanobiol. 13:289–302, 2014.

    Article  Google Scholar 

  13. Fang, M., D. Park, J. L. Singuranayo, H. Chen, and Y. Li. Aggregate gradation theory, design and its impact on asphalt pavement performance: a review. Int J Pavement Eng 2018. https://doi.org/10.1080/10298436.2018.1430365.

    Article  Google Scholar 

  14. Forster, R. E., F. Thurmer, C. Wallrapp, A. W. Lloyd, W. Macfarlane, G. J. Phillips, J. P. Boutrand, and A. L. Lewis. Characterisation of physico-mechanical properties and degradation potential of calcium alginate beads for use in embolization. J. Mater. Sci. Mater. Med. 21:2243–2251, 2010.

    Article  CAS  Google Scholar 

  15. Fuchs, K., R. Duran, A. Denys, P. E. Bize, G. Borchard, and O. Jordan. Drug-eluting embolic microspheres for local drug delivery-State of the art. J. Control. Release 262:127–138, 2017.

    Article  CAS  Google Scholar 

  16. Fuller, W. B. The laws of proportioning concrete. J. Trans. Div. Am. Soc. Civ. Eng. 59:67–143, 1907.

    Article  Google Scholar 

  17. Giunchedi, P., M. Maestri, E. Gavini, P. Dionigi, and G. Rassu. Transarterial chemoembolization of hepatocellular carcinoma. Expert Opin. Drug Deliv. 10:679–690, 2013.

    Article  CAS  Google Scholar 

  18. Guadagni, S., A. Pizzutilli, E. Mancini, A. Varrone, G. Palumbo, G. Amicucci, S. Perri, M. Deraco, and G. Fiorentini. Significance of duplex/colour Doppler sonography in hepatic arterial chemotherapy for patients with liver metastases from colorectal carcinoma. Eur. J. Surg. Oncol. 26:381–386, 2000.

    Article  CAS  Google Scholar 

  19. Han, G. H., S. Berhane, H. Toyoda, D. Bettinger, O. Elshaarawy, A. W. H. Chan, M. Kirstein, et al. Prediction of survival among patients receiving transarterial chemoembolization for hepatocellular carcinoma: a response-based approach. Hepatology 72:198–212, 2020.

    Article  CAS  Google Scholar 

  20. Heaysman, C. L., G. J. Philips, A. W. Lloyd, and A. L. Lewis. Unusual behaviour induced by phase separation in hydrogel microspheres. Acta Biomater. 53:190–198, 2017.

    Article  CAS  Google Scholar 

  21. Hidaka, K., L. Moine, G. Collin, D. Labarre, J. L. Grossiord, N. Huang, K. Osuga, S. Wada, and A. Laurent. Elasticity and viscoelasticity of embolization microspheres. J. Mech. Behav. Biomed. Mater. 4:2161–2167, 2011.

    Article  CAS  Google Scholar 

  22. Hutter, J. L., and J. Bechhoefer. Calibration of atomic force microscope tips. Rev. Sci. Instrum. 64:1868–1873, 1993.

    Article  CAS  Google Scholar 

  23. Ladyzhenskaya, A. O. Mathematical analysis of Navier-Stokes equations for incompressible liquids. Annu. Rev. Fluid Mech. 7:249–272, 1975.

    Article  Google Scholar 

  24. Laurent, A., E. Velzenberger, M. Wassef, J. P. Pelage, and A. L. Lewis. Do microspheres with narrow or standard size distributions localize differently in vasculature? An experimental study in sheep kidney and uterus. J. Vasc. Interv. Radiol. 19:1733–1739, 2008.

    Article  Google Scholar 

  25. Laurent, A., M. Wassef, J. P. Saint Maurice, J. Namur, J. P. Pelage, A. Se-ron, R. Chapot, and J. J. Merland. Arterial distribution of calibrated tris-acryl gelatin and polyvinyl alcohol microspheres in a sheep kidney model. Investig. Radiol. 41:8–14, 2006.

    Article  CAS  Google Scholar 

  26. Leen, E., J. A. Goldberg, J. Robertson, G. R. Sutherland, D. M. Hemingway, T. G. Cooke, and C. S. McArdle. Detection of hepatic metastases using duplex/color doppler sonography. Ann. Surg. 214:599–604, 1991.

    Article  CAS  Google Scholar 

  27. Lira, B., D. Jelagin, and B. Birgisson. Gradation-based framework for asphalt mixture. Mater. Struct. 46:1401–1414, 2012.

    Article  Google Scholar 

  28. Martin, R., J. Irurzun, J. Munchart, I. Trofimov, A. Scupchenko, C. Tatum, and G. Narayanan. Optimal technique and response of doxorubicin beads in hepatocellular cancer: bead size and dose. Korean J. Hepatol. 17:51–60, 2011.

    Article  Google Scholar 

  29. Oktar, S. O., C. Yucel, T. Demirogullari, A. Uner, M. Benekli, G. Erbas, and H. Ozdemir. Doppler sonographic evaluation of hemodynamic changes in colorectal liver metastases relative to liver size. J. Ultrasound Med. 25:575–582, 2006.

    Article  Google Scholar 

  30. Padia, S. A., G. Shivaram, S. Bastawrous, P. Bhargava, N. J. Vo, S. Vaidya, K. Valji, W. P. Harris, D. S. Hippe, and M. J. Kogut. Safety and efficacy of drug-eluting bead chemoembolization for hepatocellular carcinoma: comparison of small-versus medium-size particles. J. Vasc. Interv. Radiol. 24:301–306, 2013.

    Article  Google Scholar 

  31. Poursaid, A., M. M. Jensen, E. Huo, and H. Ghandehari. Polymeric materials for embolic and chemoembolic applications. J. Control. Release 240:414–433, 2016.

    Article  CAS  Google Scholar 

  32. Richards, A. L., C. Kleinstreuer, A. S. Kennedy, E. Childress, and G. D. Buckner. Experimental microsphere targeting in a representative hepatic artery system. IEEE Trans. Biomed. Eng. 59:198–204, 2011.

    Article  Google Scholar 

  33. Roberson, P. L., R. K. T. Haken, D. L. McShan, P. E. McKeever, and W. D. Ensminger. Three-dimensional tumor dosimetry for hepatic yttrium-90-microsphere therapy. J. Nucl. Med. 33:735–738, 1992.

    CAS  PubMed  Google Scholar 

  34. Salem, R., R. J. Lewandowski, M. F. Mulcahy, A. Riaz, R. K. Ryu, S. Ibrahim, B. Atassi, T. Baker, V. Gates, F. H. Miller, K. T. Sato, E. Wang, R. Gupta, A. B. Benson, S. B. Newman, R. A. Omary, M. Abecassis, and L. Kulik. Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 138:52–64, 2010.

    Article  CAS  Google Scholar 

  35. van den Hoven, A. F., M. G. Lam, S. Jernigan, M. A. van den Bosch, and G. D. Buckner. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. J. Exp. Clin. Cancer Res. 34:74, 2015.

    Article  Google Scholar 

  36. Wig, R., G. Williams, and E. Gates. Strength and Other Properties of Concrete as Affected by Materials and Methods of PreparationTech Bu Stand No. 58, Washington, DC: US Government Printing Office, 1916.

    Book  Google Scholar 

  37. Xiao, Y. D., C. Ma, Z. S. Zhang, and J. Liu. Safety and efficacy assessment of transarterial chemoembolization using drug-eluting beads in patients with hepatocellular carcinoma and arterioportal shunt: a single-center experience. Cancer Manag. Res. 11:1551–1557, 2019.

    Article  CAS  Google Scholar 

  38. Xu, Z., S. Jernigan, C. Kleinstreuer, and G. D. Buckner. Solid tumor embolotherapy in hepatic arteries with an anti-reflux catheter system. Ann. Biomed. Eng. 44:1036–1046, 2016.

    Article  Google Scholar 

  39. Zhang, X., H. L. H. Ng, A. Lu, C. Lin, L. Zhou, G. Lin, Y. Zhang, Z. Yang, and H. Zhang. Drug delivery system targeting advanced hepatocellular carcinoma: current and future. Nanomedicine 12:853–869, 2016.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mr. Li Gong at the Instrumental Analysis and Research Centre (Sun Yat-sen University) for his assistance in AFM. This work was supported by the National Natural Science Foundation of China (Grant No.: 81971760), and the Science and Technology Planning Project of Guangdong Province (Grant No.: 2015B010125004).

Conflict of interest

The content of this manuscript is original which has not been published previously in any other journal at the time of submission. All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu, Yuexiong Yang or Chao Zhang.

Additional information

Associate Editor Zhongjun Wu oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 931 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Chen, Z., Yang, Y. et al. Enhanced Embolization Efficacy with the Embolic Microspheres Guided by the Aggregate Gradation Theory Through In Vitro and Simulation Evaluation. Cardiovasc Eng Tech 12, 398–406 (2021). https://doi.org/10.1007/s13239-021-00534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00534-x

Keywords

Navigation